CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Salient Object Detection via Structured Matrix Decomposition
Peng, Houwen1,2; Li, Bing1; Ling, Haibin2; Hu, Weiming1; Xiong, Weihua1; Maybank, Stephen J.3
2017-04-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号39期号:4页码:818-832
文章类型Article
摘要Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e. g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.
关键词Salient Object Detection Matrix Decomposition Low Rank Structured Sparsity Subspace Learning
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2016.2562626
关键词[WOS]REGION DETECTION ; VISUAL-ATTENTION ; COMPLETION ; MODEL
收录类别SCI
语种英语
项目资助者973 basic research program of China(2014CB349303) ; Natural Science Foundation of China(61472421 ; Strategic Priority Research Program of the CAS(XDB02070003) ; US National Science Foundation Grants(IIS-1218156 ; 61370038 ; IIS-1350521) ; 61303086)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000397717600016
引用统计
被引频次:36[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14432
专题模式识别国家重点实验室_视频内容安全
作者单位1.Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
3.Birkbeck Coll, Dept Comp Sci & Informat Syst, London WC1E 7HX, England
推荐引用方式
GB/T 7714
Peng, Houwen,Li, Bing,Ling, Haibin,et al. Salient Object Detection via Structured Matrix Decomposition[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2017,39(4):818-832.
APA Peng, Houwen,Li, Bing,Ling, Haibin,Hu, Weiming,Xiong, Weihua,&Maybank, Stephen J..(2017).Salient Object Detection via Structured Matrix Decomposition.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,39(4),818-832.
MLA Peng, Houwen,et al."Salient Object Detection via Structured Matrix Decomposition".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 39.4(2017):818-832.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TPAMI07464858.pdf(3573KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peng, Houwen]的文章
[Li, Bing]的文章
[Ling, Haibin]的文章
百度学术
百度学术中相似的文章
[Peng, Houwen]的文章
[Li, Bing]的文章
[Ling, Haibin]的文章
必应学术
必应学术中相似的文章
[Peng, Houwen]的文章
[Li, Bing]的文章
[Ling, Haibin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TPAMI07464858.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。