CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
组合优化算法在酶功能设计中的应用
舒茂1,2; 王红2
Source Publication计算机辅助设计与图形学学报
2016-10-20
Volume28Issue:10Pages:1803-1810
Abstract酶功能设计是指野生型酶如何通过基因突变得到具有特定功能的酶的过程, 定点突变是改变酶功能的一种 重要途径. 从数学的观点看, 基于定点突变的酶功能设计是一个 NP 难的组合优化问题. 针对该问题, 提出一种最优 突变组合的预测模型. 首先产生酶基因上每个活性位点的饱和突变模拟数据; 然后根据位点间的独立性假设得到多 个位点组合突变的作用效果; 最后利用模拟退火和遗传算法求解最优的突变组合. 仿真实验结果表明, 遗传算法在 求解该问题时具有更优越的性能. 文中模型可为生物实验提供一定指导.
Other AbstractEnzyme function design refers to the process of generating specific functions from wild type through gene mutation, and site-directed mutagenesis is one of the most important ways to change enzyme function. Mathematically enzyme function design through site-directed mutagenesis can be cast as an NP-hard combinatorial optimization problem. In this work, a prediction model is proposed for the optimal combinatorial mutations. At first, saturation mutagenesis data at each active site in the enzyme gene are simulated. Then the effect of combinatorial mutations is predicted on the assumption that the effects at different active sites are independent. Finally, simulated annealing and genetic algorithm are adopted to predict the optimal combinatorial mutations. Simulation results show that both the two optimization algorithms can be used as a candidate solver, but the genetic algorithm performs better. Our prediction model could be used to act as some theoretical guidance for real enzyme function design.
Keyword酶功能设计 定点突变 组合优化 模拟退火 遗传算法
Document Type期刊论文
Identifierhttp://ir.ia.ac.cn/handle/173211/14453
Collection模式识别国家重点实验室_机器人视觉
Corresponding Author王红
Affiliation1.中国科学院自动化研究所模式识别国家重点实验室
2.中国科学院大学
Recommended Citation
GB/T 7714
舒茂,王红. 组合优化算法在酶功能设计中的应用[J]. 计算机辅助设计与图形学学报,2016,28(10):1803-1810.
APA 舒茂,&王红.(2016).组合优化算法在酶功能设计中的应用.计算机辅助设计与图形学学报,28(10),1803-1810.
MLA 舒茂,et al."组合优化算法在酶功能设计中的应用".计算机辅助设计与图形学学报 28.10(2016):1803-1810.
Files in This Item: Download All
File Name/Size DocType Version Access License
4028e4e44c075f170151(288KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[舒茂]'s Articles
[王红]'s Articles
Baidu academic
Similar articles in Baidu academic
[舒茂]'s Articles
[王红]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[舒茂]'s Articles
[王红]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 4028e4e44c075f1701510f2cd66c33a3-final.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.