CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
Mining Inference Formulas by Goal-Directed Random Walks
Wei Zhuoyu; Zhao Jun; Liu Kang
2016-11
会议名称Conference on Empirical Methods in Natural Language Processing
页码1379-1388
会议日期2016.11.1-2016.11.5
会议地点Austin, Texas, USA
摘要Deep inference on a large-scale knowledge base (KB) needs a mass of formulas, but it is
almost impossible to create all formulas manually. Data-driven methods have been proposed to mine formulas from KBs automatically, where random sampling and approximate calculation are common techniques to handle big data. Among a series of methods, Random Walk is believed to be suitable for knowledge graph data. However, a pure random walk without goals still has a poor efficiency of mining useful formulas, and even introduces lots of noise which may mislead inference. Although several heuristic rules have been proposed to direct random walks, they do not work well due to the diversity of formulas. To this end, we propose a novel goaldirected inference formula mining algorithm, which directs random walks by the specific inference target at each step. The algorithm is more inclined to visit benefic structures to infer the target, so it can increase efficiency of random walks and avoid noise simultaneously. The experiments on both WordNet and Freebase prove that our approach is has a high efficiency and performs best on the task.
  
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14494
专题模式识别国家重点实验室_自然语言处理
通讯作者Liu Kang
作者单位National Laboratory of Pattern Recognition,Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Wei Zhuoyu,Zhao Jun,Liu Kang. Mining Inference Formulas by Goal-Directed Random Walks[C],2016:1379-1388.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
emnlp工作官方.pdf(2640KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei Zhuoyu]的文章
[Zhao Jun]的文章
[Liu Kang]的文章
百度学术
百度学术中相似的文章
[Wei Zhuoyu]的文章
[Zhao Jun]的文章
[Liu Kang]的文章
必应学术
必应学术中相似的文章
[Wei Zhuoyu]的文章
[Zhao Jun]的文章
[Liu Kang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: emnlp工作官方.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。