CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
Link Prediction via Mining Markov Logic Formulas to Improve Social Recommendation
Wei Zhuoyu; Zhao Jun; Liu Kang; He Shizhu
2016-09
会议名称全国知识图谱与语义计算 大会
会议日期2016-9
会议地点北京
摘要Social networks have been a main way to obtain information in recent years, but the huge amount of information obstructs people from obtaining something that they are really interested in. Social recommendation system is introduced to solve this problem and brings a new challenge of predicting peoples preferences. In a graph view, social recommendation can be viewed as link prediction task on the social graph. Therefore, some link prediction technique can apply to social recommendation. In this paper, we propose a novel approach to bring logic formulas in social recommendation system and it can improve the accuracy of recommendations. This approach is made up of two parts: (1) It treats the whole social network with kinds of attributes as a semantic network, and finds frequent structures as logic formulas via random graph algorithms. (2) It builds a Markov Logic Network to model logic formulas, attaches weights to each of them to measure formulas contributions, and then learns the weights discriminatively from training data. In addition, the formulas with weights can be viewed as the reason why people should accept a specific recommendation, and supplying it for people may increase the probability of people accepting the recommendation. We carry out several experiments to explore and analyze the effects of various factors of our method on recommendation results, and get the final method to compare with baselines. 
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14496
专题模式识别国家重点实验室_自然语言处理
通讯作者Liu Kang
作者单位National Laboratory of Pattern Recognition,Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Wei Zhuoyu,Zhao Jun,Liu Kang,et al. Link Prediction via Mining Markov Logic Formulas to Improve Social Recommendation[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
chp%3A10.1007%2F978-(205KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei Zhuoyu]的文章
[Zhao Jun]的文章
[Liu Kang]的文章
百度学术
百度学术中相似的文章
[Wei Zhuoyu]的文章
[Zhao Jun]的文章
[Liu Kang]的文章
必应学术
必应学术中相似的文章
[Wei Zhuoyu]的文章
[Zhao Jun]的文章
[Liu Kang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: chp%3A10.1007%2F978-981-10-3168-7_14.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。