CASIA OpenIR  > 综合信息系统研究中心
Rotated Region Based CNN for Ship Detection
Liu ZK(刘子坤)1,2; Hu JG(胡锦高)1,2; Weng LB(翁璐斌)1; Yang YP(杨一平)1; Weng LB(翁璐斌)
2017-10
会议名称2017 IEEE International Conference on Image Processing
会议日期17-20 September 2017
会议地点China National Convention Center in Beijing, China
摘要The state-of-the-art object detection networks for natural images have recently demonstrated impressive performances. However the complexity of ship detection in high resolution satellite images exposes the limited capacity of these networks for strip-like rotated assembled object detection which are common in remote sensing images. In this paper, we embrace this observation and introduce the rotated region based CNN (RR-CNN), which can learn and accurately extract features of rotated regions and locate rotated objects precisely. RR-CNN has three important new components including a rotated region of interest (RRoI) pooling layer, a rotated bounding box regression model and a multi-task method for non-maximal suppression (NMS) between different classes. Experimental results on the public ship dataset HRSC2016 confirm that RR-CNN outperforms baselines by a large margin.
关键词Rotated Region Convolutional Neural Network Ship Detection
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14548
专题综合信息系统研究中心
通讯作者Weng LB(翁璐斌)
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Liu ZK,Hu JG,Weng LB,et al. Rotated Region Based CNN for Ship Detection[C],2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
rrcnn_final_v1.pdf(2750KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu ZK(刘子坤)]的文章
[Hu JG(胡锦高)]的文章
[Weng LB(翁璐斌)]的文章
百度学术
百度学术中相似的文章
[Liu ZK(刘子坤)]的文章
[Hu JG(胡锦高)]的文章
[Weng LB(翁璐斌)]的文章
必应学术
必应学术中相似的文章
[Liu ZK(刘子坤)]的文章
[Hu JG(胡锦高)]的文章
[Weng LB(翁璐斌)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: rrcnn_final_v1.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。