CASIA OpenIR  > 综合信息系统研究中心
Efficient Vehicle Detection and Orientation Estimation by Confusing Subsets Categorization
Li FM(李非墨); Lan XS(兰晓松); Li SX(李书晓); Zhu CF(朱承飞); Chang HX(常红星)
2017-05
会议名称2016 2nd IEEE International Conference on Computer and Communications
会议日期2016-12
会议地点中国四川成都
摘要Aerial traffic surveillance requires algorithms that can accurately predict the locations and orientations of hundreds of vehicles in a large high resolution aerial image within seconds. Under this constraint, the classical cascaded detection framework based on boosting algorithms still remains an optimal choice. These methods, however, usually use many binary classifiers to enhance the localization performance resistant to orientation variances, which is not effective in distinguishing confusing orientations and subsets. This paper categorizes these confusing subsets automatically by analyzing the correlations between specific orientation angles and location deviations at local detection window regions, makes robust predictions on them by N-nary multi-class classifiers. This helps to reduce the required number of classifiers to less than half and improve both localization and orientation estimation accuracies, making it potential for additional speed optimization.
关键词High Resolution Aerial Image Vehicle Detection Orientation Estimation
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14580
专题综合信息系统研究中心
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Li FM,Lan XS,Li SX,et al. Efficient Vehicle Detection and Orientation Estimation by Confusing Subsets Categorization[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CW585, 终稿.pdf(336KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li FM(李非墨)]的文章
[Lan XS(兰晓松)]的文章
[Li SX(李书晓)]的文章
百度学术
百度学术中相似的文章
[Li FM(李非墨)]的文章
[Lan XS(兰晓松)]的文章
[Li SX(李书晓)]的文章
必应学术
必应学术中相似的文章
[Li FM(李非墨)]的文章
[Lan XS(兰晓松)]的文章
[Li SX(李书晓)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: CW585, 终稿.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。