High-speed Railway Real-time Localization Auxiliary Method based on Deep Neural Network
Dongjie Chen1,2; Wensheng Zhang1,2; Yang Yang1
2017-04
会议名称13th International Conference of Computational Methods in Sciences and Engineering
会议日期2017-4-15
会议地点Athens,Greece
摘要
High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14583
专题精密感知与控制研究中心_人工智能与机器学习
通讯作者Wensheng Zhang
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Dongjie Chen,Wensheng Zhang,Yang Yang. High-speed Railway Real-time Localization Auxiliary Method based on Deep Neural Network[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ICCMSE_2017_29_paper(466KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dongjie Chen]的文章
[Wensheng Zhang]的文章
[Yang Yang]的文章
百度学术
百度学术中相似的文章
[Dongjie Chen]的文章
[Wensheng Zhang]的文章
[Yang Yang]的文章
必应学术
必应学术中相似的文章
[Dongjie Chen]的文章
[Wensheng Zhang]的文章
[Yang Yang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ICCMSE_2017_29_paper-final-version_ICCMSE2017.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。