CASIA OpenIR  > 智能感知与计算研究中心
A Code-Level Approach to Heterogeneous Iris Recognition
Liu, Nianfeng; Liu, Jing; Sun, Zhenan; Tan, Tieniu
2017-10-01
发表期刊IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
卷号12期号:10页码:2373-2386
文章类型Article
摘要Matching heterogeneous iris images in less constrained applications of iris biometrics is becoming a challenging task. The existing solutions try to reduce the difference between heterogeneous iris images in pixel intensities or filtered features. In contrast, this paper proposes a code-level approach in heterogeneous iris recognition. The non-linear relationship between binary feature codes of heterogeneous iris images is modeled by an adapted Markov network. This model transforms the number of iris templates in the probe into a homogenous iris template corresponding to the gallery sample. In addition, a weight map on the reliability of binary codes in the iris template can be derived from the model. The learnt iris template and weight map are jointly used in building a robust iris matcher against the variations of imaging sensors, capturing distance, and subject conditions. Extensive experimental results of matching cross-sensor, high-resolution versus low-resolution and, clear versus blurred iris images demonstrate the code-level approach can achieve the highest accuracy in compared with the existing pixel-level, feature-level, and score-level solutions.
关键词Iris Recognition Heterogeneous Cross-sensor Markov
WOS标题词Science & Technology ; Technology
DOI10.1109/TIFS.2017.2686013
关键词[WOS]SUPERRESOLUTION ; SYSTEMS
收录类别SCI
语种英语
项目资助者National Key Research and Development Program of China(2016YFB1001000) ; Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02080007) ; National Natural Science Foundation of China(61573360)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000406238100001
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14807
专题智能感知与计算研究中心
作者单位Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Natl Lab Pattern Recognit,Ctr Res Intelligent Per, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Liu, Nianfeng,Liu, Jing,Sun, Zhenan,et al. A Code-Level Approach to Heterogeneous Iris Recognition[J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,2017,12(10):2373-2386.
APA Liu, Nianfeng,Liu, Jing,Sun, Zhenan,&Tan, Tieniu.(2017).A Code-Level Approach to Heterogeneous Iris Recognition.IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,12(10),2373-2386.
MLA Liu, Nianfeng,et al."A Code-Level Approach to Heterogeneous Iris Recognition".IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12.10(2017):2373-2386.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
code-level-R2_2.pdf(6119KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Nianfeng]的文章
[Liu, Jing]的文章
[Sun, Zhenan]的文章
百度学术
百度学术中相似的文章
[Liu, Nianfeng]的文章
[Liu, Jing]的文章
[Sun, Zhenan]的文章
必应学术
必应学术中相似的文章
[Liu, Nianfeng]的文章
[Liu, Jing]的文章
[Sun, Zhenan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: code-level-R2_2.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。