CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
A Simple, Straightforward and Effective Model for Joint Bilingual Terms Detection and Word Alignment in SMT
Guoping, Huang1,2; Yu, Zhou1; Jiajun, Zhang1; Chengqing, Zong1
2016-07
会议名称The Fifth Conference on Natural Language Processing and Chinese Computing & The Twenty Fourth International Conference on Computer Processing of Oriental Languages(NLPCC-ICCPOL 2016)
会议录名称Natural Language Understanding and Intelligent Applications: 5th CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2016, and 24th International Conference on Computer Processing of Oriental Languages, ICCPOL 2016, Kunming, China, December 2--6, 2016, Proceedings
会议日期2016-7-30
会议地点Kunming, China
摘要Terms extensively exist in specific domains, and term translation plays a critical role in domain-specific statistical machine translation (SMT) tasks. However, it’s a challenging task to extract term translation knowledge from parallel sentences because of the error propagation in the SMT training pipeline. In this paper, we propose a simple, straightforward and effective model to mitigate the error propagation and improve the quality of term translation. The proposed model goes from initial weak monolingual detection of terms based on naturally annotated resources (e.g. Wikipedia) to a stronger bilingual joint detection of terms, and allows the word alignment to interact. The extensive experiments show that our method substantially boosts the performance of bilingual term detection by more than 8 points absolute F-score. And the term translation quality is substantially improved by more than 3.66% accuracy, as well as the sentence translation quality is significantly improved by 0.38 absolute BLEU points, compared with the strong baseline, i.e. the well tuned Moses.
关键词Machine Translation Term Detection Word Alignment
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/14811
专题模式识别国家重点实验室_自然语言处理
通讯作者Chengqing, Zong
作者单位1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2.University of Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Guoping, Huang,Yu, Zhou,Jiajun, Zhang,et al. A Simple, Straightforward and Effective Model for Joint Bilingual Terms Detection and Word Alignment in SMT[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
chp%3A10.1007%2F978-(1460KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guoping, Huang]的文章
[Yu, Zhou]的文章
[Jiajun, Zhang]的文章
百度学术
百度学术中相似的文章
[Guoping, Huang]的文章
[Yu, Zhou]的文章
[Jiajun, Zhang]的文章
必应学术
必应学术中相似的文章
[Guoping, Huang]的文章
[Yu, Zhou]的文章
[Jiajun, Zhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: chp%3A10.1007%2F978-3-319-50496-4_9.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。