CASIA OpenIR  > 智能感知与计算研究中心
Video Super-Resolution via Bidirectional Recurrent Convolutional Networks
Huang, Yan1,2; Wang, Wei1,2; Wang, Liang1,2,3
2018-04-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号40期号:4页码:1015-1028
文章类型Article
摘要Super resolving a low-resolution video, namely video super-resolution (SR), is usually handled by either single-image SR or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video SR. Multi-Frame SR generally extracts motion information, e.g., optical flow, to model the temporal dependency, but often shows high computational cost. Considering that recurrent neural networks (RNNs) can model long-term temporal dependency of video sequences well, we propose a fully convolutional RNN named bidirectional recurrent convolutional network for efficient multi-frame SR. Different from vanilla RNNs, 1) the commonly-used full feedforward and recurrent connections are replaced with weight-sharing convolutional connections. So they can greatly reduce the large number of network parameters and well model the temporal dependency in a finer level, i.e., patch-based rather than frame-based, and 2) connections from input layers at previous timesteps to the current hidden layer are added by 3D feedforward convolutions, which aim to capture discriminate spatio-temporal patterns for short-term fast-varying motions in local adjacent frames. Due to the cheap convolutional operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame SR methods. With the powerful temporal dependency modeling, our model can super resolve videos with complex motions and achieve well performance.
关键词Deep Learning Recurrent Neural Networks 3d Convolution Video Super-resolution
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2017.2701380
关键词[WOS]IMAGE SUPERRESOLUTION ; LEARNING ALGORITHM ; NEURAL-NETWORKS ; RESOLUTION ; REGISTRATION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61572504 ; Strategic Priority Research Program of the CAS(XDB02070100) ; National Key Research and Development Program of China(2016YFB1001000) ; Beijing Natural Science Foundation(4162058) ; NVIDIA DGX-1 AI Supercomputer ; NVIDIA ; 61525306 ; 61420106015 ; 61633021)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000426687100018
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14820
专题智能感知与计算研究中心
作者单位1.Chinese Acad Sci CASIA, Inst Automat, NLPR, Ctr Res Intelligent Percept & Comp CRIPAC, Beijing 100049, Peoples R China
2.UCAS, Beijing 100049, Peoples R China
3.Chinese Acad Sci CASIA, Inst Automat, CEBSIT, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Huang, Yan,Wang, Wei,Wang, Liang. Video Super-Resolution via Bidirectional Recurrent Convolutional Networks[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2018,40(4):1015-1028.
APA Huang, Yan,Wang, Wei,&Wang, Liang.(2018).Video Super-Resolution via Bidirectional Recurrent Convolutional Networks.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,40(4),1015-1028.
MLA Huang, Yan,et al."Video Super-Resolution via Bidirectional Recurrent Convolutional Networks".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 40.4(2018):1015-1028.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TPAMI_final.pdf(10250KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Yan]的文章
[Wang, Wei]的文章
[Wang, Liang]的文章
百度学术
百度学术中相似的文章
[Huang, Yan]的文章
[Wang, Wei]的文章
[Wang, Liang]的文章
必应学术
必应学术中相似的文章
[Huang, Yan]的文章
[Wang, Wei]的文章
[Wang, Liang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TPAMI_final.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。