CASIA OpenIR  > 智能感知与计算研究中心
Conditional High-Order Boltzmann Machines for Supervised Relation Learning
Huang, Yan1,2; Wang, Wei1,2; Wang, Liang2,3,4; Tan, Tieniu2,3,4
2017-09-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号26期号:9页码:4297-4310
文章类型Article
摘要Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.
关键词Deep Learning High-order Boltzmann Machine Relation Learning Face Verification Action Similarity Labeling
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2017.2698918
关键词[WOS]DEEP NEURAL-NETWORK ; FACE VERIFICATION ; RECOGNITION ; DIMENSIONALITY ; ALGORITHM ; WILD
收录类别SCI
语种英语
项目资助者National Key Research and Development Program of China(2016YFB1001000) ; National Natural Science Foundation of China(61525306 ; Strategic Priority Research Program of the CAS(XDB02070100) ; Beijing Natural Science Foundation(4162058) ; NVIDIA ; NVIDIA DGX-1 AI Supercomputer ; 61633021 ; 61572504 ; 61420106015)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000405395900004
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/14821
专题智能感知与计算研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100044, Peoples R China
3.Chinese Acad Sci CASIA, Inst Automat, Natl Lab Pattern Recognit, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China
4.CASIA, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Huang, Yan,Wang, Wei,Wang, Liang,et al. Conditional High-Order Boltzmann Machines for Supervised Relation Learning[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2017,26(9):4297-4310.
APA Huang, Yan,Wang, Wei,Wang, Liang,&Tan, Tieniu.(2017).Conditional High-Order Boltzmann Machines for Supervised Relation Learning.IEEE TRANSACTIONS ON IMAGE PROCESSING,26(9),4297-4310.
MLA Huang, Yan,et al."Conditional High-Order Boltzmann Machines for Supervised Relation Learning".IEEE TRANSACTIONS ON IMAGE PROCESSING 26.9(2017):4297-4310.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
tip_final.pdf(4175KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Yan]的文章
[Wang, Wei]的文章
[Wang, Liang]的文章
百度学术
百度学术中相似的文章
[Huang, Yan]的文章
[Wang, Wei]的文章
[Wang, Liang]的文章
必应学术
必应学术中相似的文章
[Huang, Yan]的文章
[Wang, Wei]的文章
[Wang, Liang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: tip_final.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。