CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
Segmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle swarm optimization
Zhu, Haijiang1; Zhuang, Zhanhong1; Zhou, Jinglin1; Zhang, Fan1; Wang, Xuejing1; Wu, Yihong2
2017-03-01
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
卷号76期号:6页码:8951-8968
文章类型Article
摘要To find the optimum threshold of an image is still an important research topic in the recent years. This paper presents a segmentation of liver cyst for ultrasound image through combining Wellner's thresholding algorithm with particle swarm optimization (PSO). The proposed method firstly obtains an optimal parameter, which expressed as a percentage or fixed amount of dark objects against a white background in a gray image, of Wellner's thresholding algorithm by PSO method. And then the gray image is binarized according to the optimized parameter. Finally, a semi-automatic method for locating and identifying multiple liver cysts or single liver cyst of ultrasound images is performed. For a validation, the results of the proposed technique are compared with those of other segmented methods. We also tested 92 ultrasound images of the liver cysts by our software. The corrected identification rate of the single liver cysts is 97.7%, and that of multiple liver cysts is 87.5 %. Experimental results demonstrate that the proposed technique is reliable on segmenting the contour of liver cyst and identifying single or multiple liver cysts.
关键词Ultrasound Image Wellner's Thresholding Algorithm Particle Swarm Optimization Segmentation Of Liver Cyst
WOS标题词Science & Technology ; Technology
DOI10.1007/s11042-016-3486-z
关键词[WOS]CLASSIFICATION ; VECTOR ; TUMOR
收录类别SCI
语种英语
项目资助者National High Technology Research and Development Program of China (863 Program)(2015AA020504) ; National Natural Science Foundation of China(61473025) ; Fundamental Research Funds for the Central Universities(YS1404) ; State Key Laboratory of Synthetical Automation for Process Industry at the Northeastern University in China
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000399017800059
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15078
专题模式识别国家重点实验室_机器人视觉
作者单位1.Beijing Univ Chem Technol, Coll Informat & Technol, Beijing 100029, Peoples R China
2.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Haijiang,Zhuang, Zhanhong,Zhou, Jinglin,et al. Segmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle swarm optimization[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2017,76(6):8951-8968.
APA Zhu, Haijiang,Zhuang, Zhanhong,Zhou, Jinglin,Zhang, Fan,Wang, Xuejing,&Wu, Yihong.(2017).Segmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle swarm optimization.MULTIMEDIA TOOLS AND APPLICATIONS,76(6),8951-8968.
MLA Zhu, Haijiang,et al."Segmentation of liver cyst in ultrasound image based on adaptive threshold algorithm and particle swarm optimization".MULTIMEDIA TOOLS AND APPLICATIONS 76.6(2017):8951-8968.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
3. Multimedia Tools (4742KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Haijiang]的文章
[Zhuang, Zhanhong]的文章
[Zhou, Jinglin]的文章
百度学术
百度学术中相似的文章
[Zhu, Haijiang]的文章
[Zhuang, Zhanhong]的文章
[Zhou, Jinglin]的文章
必应学术
必应学术中相似的文章
[Zhu, Haijiang]的文章
[Zhuang, Zhanhong]的文章
[Zhou, Jinglin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 3. Multimedia Tools and Applications 2017.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。