Self-Taught convolutional neural networks for short text clustering
Xu, Jiaming1; Xu, Bo1; Wang, Peng1; Zheng, Suncong1; Tian, Guanhua1; Zhao, Jun1,2; Xu, Bo1,3
2017-04-01
发表期刊NEURAL NETWORKS
期号88页码:22-31
文章类型Article
摘要Short text clustering is a challenging problem due to its sparseness of text representation. Herewepropose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets. (C) 2017 Elsevier Ltd. All rights reserved.
关键词Semantic Clustering Neural Networks Short Text Unsupervised Learning
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
DOI10.1016/j.neunet.2016.12.008
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61602479 ; Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02070005) ; 61303172 ; 61403385
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000397959900003
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15079
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位1.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
2.NLPR, Beijing, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jiaming,Xu, Bo,Wang, Peng,et al. Self-Taught convolutional neural networks for short text clustering[J]. NEURAL NETWORKS,2017(88):22-31.
APA Xu, Jiaming.,Xu, Bo.,Wang, Peng.,Zheng, Suncong.,Tian, Guanhua.,...&Xu, Bo.(2017).Self-Taught convolutional neural networks for short text clustering.NEURAL NETWORKS(88),22-31.
MLA Xu, Jiaming,et al."Self-Taught convolutional neural networks for short text clustering".NEURAL NETWORKS .88(2017):22-31.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2017-Neural Networks(3099KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Jiaming]的文章
[Xu, Bo]的文章
[Wang, Peng]的文章
百度学术
百度学术中相似的文章
[Xu, Jiaming]的文章
[Xu, Bo]的文章
[Wang, Peng]的文章
必应学术
必应学术中相似的文章
[Xu, Jiaming]的文章
[Xu, Bo]的文章
[Wang, Peng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2017-Neural Networks-Self-Taught Convolutional Neural Networks for Short Text Clustering.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。