Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph
Wen, Longyin1; Lei, Zhen2; Chang, Ming-Ching3; Qi, Honggang4; Lyu, Siwei1
2017-04-01
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION
卷号122期号:2页码:313-333
文章类型Article
摘要Incorporating multiple cameras is an effective solution to improve the performance and robustness of multi-target tracking to occlusion and appearance ambiguities. In this paper, we propose a new multi-camera multi-target tracking method based on a space-time-view hyper-graph that encodes higher-order constraints (i.e., beyond pairwise relations) on 3D geometry, appearance, motion continuity, and trajectory smoothness among 2D tracklets within and across different camera views. We solve tracking in each single view and reconstruction of tracked trajectories in 3D environment simultaneously by formulating the problem as an efficient search of dense sub-hypergraphs on the space-time-view hyper-graph using a sampling based approach. Experimental results on the PETS 2009 dataset and MOTChallenge 2015 3D benchmark demonstrate that our method performs favorably against the state-of-the-art methods in both single-camera and multi-camera multi-target tracking, while achieving close to real-time running efficiency. We also provide experimental analysis of the influence of various aspects of our method to the final tracking performance.
关键词Multi-camera Multi-target Tracking Single-camera Multi-target Tracking Space-time-view Hyper-graph Dense Sub-hypergraph Search
WOS标题词Science & Technology ; Technology
DOI10.1007/s11263-016-0943-0
关键词[WOS]MULTIPERSON TRACKING ; ALGORITHM ; TARGETS ; PEOPLE
收录类别SCI
语种英语
项目资助者US National Science Foundation Research Grant(CCF-1319800) ; National Key Research and Development Plan(2016 YFC0801002) ; Chinese National Natural Science Foundation(61375037 ; National Nature Science Foundation of China(61472388) ; 61473291)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000398162200008
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15082
专题模式识别国家重点实验室_生物识别与安全技术研究
作者单位1.SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
3.SUNY Albany, Dept Comp Engn, Albany, NY 12222 USA
4.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wen, Longyin,Lei, Zhen,Chang, Ming-Ching,et al. Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2017,122(2):313-333.
APA Wen, Longyin,Lei, Zhen,Chang, Ming-Ching,Qi, Honggang,&Lyu, Siwei.(2017).Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph.INTERNATIONAL JOURNAL OF COMPUTER VISION,122(2),313-333.
MLA Wen, Longyin,et al."Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph".INTERNATIONAL JOURNAL OF COMPUTER VISION 122.2(2017):313-333.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
LyWen-MCMT-IJCV-2016(3996KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wen, Longyin]的文章
[Lei, Zhen]的文章
[Chang, Ming-Ching]的文章
百度学术
百度学术中相似的文章
[Wen, Longyin]的文章
[Lei, Zhen]的文章
[Chang, Ming-Ching]的文章
必应学术
必应学术中相似的文章
[Wen, Longyin]的文章
[Lei, Zhen]的文章
[Chang, Ming-Ching]的文章
相关权益政策
暂无数据
收藏/分享
文件名: LyWen-MCMT-IJCV-2016.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。