Learning completed discriminative local features for texture classification
Zhang, Zhong1; Liu, Shuang1; Mei, Xing2; Xiao, Baihua3; Zheng, Liang4
2017-07-01
发表期刊PATTERN RECOGNITION
卷号67页码:263-275
文章类型Article
摘要Local binary patterns (LBP) and its variants have shown great potentials in texture classification tasks. LBP-like texture classification methods usually follow a two-step feature extraction process: in the first pattern encoding step, the local structure information around each pixel is encoded into a binary string; in the second histogram accumulation step, the binary strings are accumulated into a histogram as the feature vector of a texture image. The performances of these classification methods are closely related to the distinctiveness of the feature vectors. In this paper, we propose a novel feature representation method, namely Completed Discriminative Local Features (CDLF), for texture classification. The proposed CDLF improves the distinctiveness of LBP-like feature vectors in two aspects: in the pattern encoding stage, we learn a transformation matrix using labeled data, which significantly increases the discrimination power of the encoded binary strings; in the histogram accumulation step, we use an adaptive weight strategy to consider the contributions of pixels in different regions. The experimental results on three challenging texture databases demonstrate that the proposed CDLF achieves significantly better results than previous LBP-like feature representation methods for texture classification tasks. (C) 2017 Elsevier Ltd. All rights reserved.
关键词Texture Classification Discriminative Learning Local Binary Patterns Adaptive Histogram Accumulation
WOS标题词Science & Technology ; Technology
DOI10.1016/j.patcog.2017.02.021
关键词[WOS]ROTATION-INVARIANT FEATURES ; BINARY PATTERNS ; IMAGE CLASSIFICATION ; FACE RECOGNITION ; RADON-TRANSFORM ; RANDOM-FIELDS ; GRAY-SCALE ; SEGMENTATION ; RETRIEVAL ; FILTERS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61401309 ; Natural Science Foundation of Tianjin(15JCQNJC01700) ; Doctoral Fund of Tianjin Normal University(5RL134 ; Open Projects Program of National Laboratory of Pattern Recognition(201700001) ; 61501327 ; 52X61405) ; 61401310)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000399520700022
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15091
专题复杂系统管理与控制国家重点实验室_影像分析与机器视觉
作者单位1.Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin 300387, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.Chinese Acad Sci, Inst Automat, State Key Lab Management & Intelligent Control Co, Beijing 100190, Peoples R China
4.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
推荐引用方式
GB/T 7714
Zhang, Zhong,Liu, Shuang,Mei, Xing,et al. Learning completed discriminative local features for texture classification[J]. PATTERN RECOGNITION,2017,67:263-275.
APA Zhang, Zhong,Liu, Shuang,Mei, Xing,Xiao, Baihua,&Zheng, Liang.(2017).Learning completed discriminative local features for texture classification.PATTERN RECOGNITION,67,263-275.
MLA Zhang, Zhong,et al."Learning completed discriminative local features for texture classification".PATTERN RECOGNITION 67(2017):263-275.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhong]的文章
[Liu, Shuang]的文章
[Mei, Xing]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhong]的文章
[Liu, Shuang]的文章
[Mei, Xing]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhong]的文章
[Liu, Shuang]的文章
[Mei, Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。