CASIA OpenIR  > 类脑智能研究中心
A computational approach towards the microscale mouse brain connectome from the mesoscale
Zhang, Tielin1; Zeng, Yi1,2,3; Xu, Bo1,2,3
2017
发表期刊JOURNAL OF INTEGRATIVE NEUROSCIENCE
卷号16期号:3页码:291-306
文章类型Article
摘要The wiring diagram of the mouse brain presents an indispensable foundation for the research on basic and applied neurobiology. It is also essential as a structural foundation for computational simulation of the brain. Different scales of the connectome give us different hints and clues to understand the functions of the nervous system and how they process information. However, compared to the macroscale and most recent mesoscale mouse brain connectome studies, there is no complete whole brain microscale connectome available because of the scalability and accuracy of automatic recognition techniques. Different scales of the connectivity data are comprehensive descriptions of the whole brain at different levels of details. Hence connectivity results from a neighborhood scale may help to predict each other. Here we report a computational approach to bring the mesoscale connectome a step forward towards the microscale from the perspective of neuron, synapse and network motifs distribution by the connectivity data at the mesoscale and some facts from the anatomical experiments at the microscale. These attempts make a step forward towards the efforts of microscale mouse brain connectome given the fact that the detailed microscale connectome results are still far to be produced due to the limitation of current nano-scale 3-D reconstruction techniques. The generated microscale mouse brain will play a key role on the understanding of the behavioral and cognitive processes of the mouse brain. In this paper, the conversion method which could get the approximate number of neurons and synapses in microscale is proposed and tested in sub-regions of Hippocampal Formation (HF), and is generalized to the whole brain. As a step forward towards understanding the microscale connectome, we propose a microscale motif prediction model to generate understanding on the microscale structure of different brain region from network motif perspective. Correlation analysis shows that the predicted motif distribution is very relevant to the real anatomical brain data at microscale.
关键词Microscale Mouse Brain Connectome Brain Connectivity Atlas Motif Distribution Synaptic Degree Distribution Analysis
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.3233/JIN-170019
关键词[WOS]NETWORK ; CORTEX ; NUMBER ; VOLUME
收录类别SCI
语种英语
项目资助者Chinese Academy of Sciences(XDB02060007) ; Beijing Municipal Commission of Science and Technology(Z161100000216124)
WOS研究方向Neurosciences & Neurology
WOS类目Neurosciences
WOS记录号WOS:000402301000004
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15122
专题类脑智能研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
2.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Tielin,Zeng, Yi,Xu, Bo. A computational approach towards the microscale mouse brain connectome from the mesoscale[J]. JOURNAL OF INTEGRATIVE NEUROSCIENCE,2017,16(3):291-306.
APA Zhang, Tielin,Zeng, Yi,&Xu, Bo.(2017).A computational approach towards the microscale mouse brain connectome from the mesoscale.JOURNAL OF INTEGRATIVE NEUROSCIENCE,16(3),291-306.
MLA Zhang, Tielin,et al."A computational approach towards the microscale mouse brain connectome from the mesoscale".JOURNAL OF INTEGRATIVE NEUROSCIENCE 16.3(2017):291-306.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
final.pdf(892KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Tielin]的文章
[Zeng, Yi]的文章
[Xu, Bo]的文章
百度学术
百度学术中相似的文章
[Zhang, Tielin]的文章
[Zeng, Yi]的文章
[Xu, Bo]的文章
必应学术
必应学术中相似的文章
[Zhang, Tielin]的文章
[Zeng, Yi]的文章
[Xu, Bo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: final.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。