Novel iterative neural dynamic programming for data-based approximate optimal control design
Mu, Chaoxu1; Wang, Ding2; He, Haibo3
2017-07-01
发表期刊AUTOMATICA
卷号81页码:240-252
文章类型Article
摘要As a powerful method of solving the nonlinear optimal control problem, the iterative adaptive dynamic programming (IADP) is usually established on the known controlled system model and is particular for affine nonlinear systems. Since most nonlinear systems are complicated to establish accurate mathematical models, this paper provides a novel data-based approximate optimal control algorithm, named iterative neural dynamic programming (INDP) for affine and non-affine nonlinear systems by using system data rather than accurate system models. The INDP strategy is built within the framework of IADP, where the convergence guarantee of the iteration is provided. The INDP algorithm is implemented based on the model-based heuristic dynamic programming (HDP) structure, where model, action and critic neural networks are employed to approximate the system dynamics, the control law and the iterative cost function, respectively. During the back-propagation of action and critic networks, the approach of directly minimizing the iterative cost function is developed to eliminate the requirement of establishing system models. The neural network implementation of the INDP algorithm is presented in detail and the associated stability is also analyzed. Simulation studies are conducted on affine and non-affine nonlinear systems, and further on the manipulator system, where all results have demonstrated the effectiveness of the proposed data-based approximate optimal control method. (C) 2017 Elsevier Ltd. All rights reserved.
关键词Iterative Neural Dynamic Programming (Indp) Data-based Control Approximate Optimal Control Heuristic Dynamic Programming (Hdp) Affine And non-Affine Nonlinear Systems
WOS标题词Science & Technology ; Technology
DOI10.1016/j.automatica.2017.03.022
关键词[WOS]NONLINEAR-SYSTEMS ; REINFORCEMENT ; STABILIZATION ; CONVERGENCE ; EQUATION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(51529701 ; US National Science Foundation(ECCS 1053717 ; Beijing Natural Science Foundation(4162065) ; 61520106009 ; CMMI 1526835) ; 61533008 ; U1501251 ; 61533017)
WOS研究方向Automation & Control Systems ; Engineering
WOS类目Automation & Control Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000403513900028
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15228
专题复杂系统管理与控制国家重点实验室_平行控制
作者单位1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin Key Lab Proc Measurement & Control, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
推荐引用方式
GB/T 7714
Mu, Chaoxu,Wang, Ding,He, Haibo. Novel iterative neural dynamic programming for data-based approximate optimal control design[J]. AUTOMATICA,2017,81:240-252.
APA Mu, Chaoxu,Wang, Ding,&He, Haibo.(2017).Novel iterative neural dynamic programming for data-based approximate optimal control design.AUTOMATICA,81,240-252.
MLA Mu, Chaoxu,et al."Novel iterative neural dynamic programming for data-based approximate optimal control design".AUTOMATICA 81(2017):240-252.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
[J-2017-A] Novel ite(1611KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mu, Chaoxu]的文章
[Wang, Ding]的文章
[He, Haibo]的文章
百度学术
百度学术中相似的文章
[Mu, Chaoxu]的文章
[Wang, Ding]的文章
[He, Haibo]的文章
必应学术
必应学术中相似的文章
[Mu, Chaoxu]的文章
[Wang, Ding]的文章
[He, Haibo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: [J-2017-A] Novel iterative neural dynamic programming for data-based approximate optimal control design.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。