Detecting Uyghur text in complex background images with convolutional neural network
Fang, Shancheng1,2; Xie, Hongtao1,2; Chen, Zhineng3; Zhu, Shiai4; Gu, Xiaoyan1,2; Gao, Xingyu5
2017-07-01
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
卷号76期号:13页码:15083-15103
文章类型Article
摘要Uyghur text detection is crucial to a variety of real-world applications, while little researches put their attention on it. In this paper, we develop an effective and efficient region-based convolutional neural network for Uyghur text detection in complex background images. The characteristics of the network include: (1) Three region proposal networks are used to improve the recall, which simultaneously utilize feature maps from different convolutional layers. (2) The overall architecture of our network is in the form of fully convolutional network, and global average pooling is applied to replace the fully connected layers in the classification and bounding box regression layers. (3) To fully utilize the baseline information, Uyghur text lines are detected directly by the network in an end-to-end fashion. Experiment results on benchmark dataset show that our method achieves an F-measure of 0.83 and detection time of 0.6 s for each image in a single K20c GPU, which is much faster than the state-of-the-art methods while keeps competitive accuracy.
关键词Uyghur Text Detection Text Localization Convolutional Neural Network
WOS标题词Science & Technology ; Technology
DOI10.1007/s11042-017-4538-8
关键词[WOS]NATURAL IMAGES ; LINE DETECTION ; LOCALIZATION ; RECOGNITION
收录类别SCI
语种英语
项目资助者National Nature Science Foundation of China(61303171 ; "trategic Priority Research Program" of the Chinese Academy of Sciences(XDA06031000) ; 61303175)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000403039400030
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15247
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位1.Chinese Acad Sci, Inst Informat Engn, Natl Engn Lab Informat Secur Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Automat, Interact Digital Media Technol Res Ctr, Beijing, Peoples R China
4.Univ Ottawa, Ottawa, ON, Canada
5.Chinese Acad Sci, Inst Software, Lab Parallel Software & Computat Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Fang, Shancheng,Xie, Hongtao,Chen, Zhineng,et al. Detecting Uyghur text in complex background images with convolutional neural network[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2017,76(13):15083-15103.
APA Fang, Shancheng,Xie, Hongtao,Chen, Zhineng,Zhu, Shiai,Gu, Xiaoyan,&Gao, Xingyu.(2017).Detecting Uyghur text in complex background images with convolutional neural network.MULTIMEDIA TOOLS AND APPLICATIONS,76(13),15083-15103.
MLA Fang, Shancheng,et al."Detecting Uyghur text in complex background images with convolutional neural network".MULTIMEDIA TOOLS AND APPLICATIONS 76.13(2017):15083-15103.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fang, Shancheng]的文章
[Xie, Hongtao]的文章
[Chen, Zhineng]的文章
百度学术
百度学术中相似的文章
[Fang, Shancheng]的文章
[Xie, Hongtao]的文章
[Chen, Zhineng]的文章
必应学术
必应学术中相似的文章
[Fang, Shancheng]的文章
[Xie, Hongtao]的文章
[Chen, Zhineng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。