Edge-directed single image super-resolution via cross-resolution sharpening function learning
Han, Wei1,2; Chu, Jun1,2; Wang, Lingfeng3; Pan, Chunhong3
2017-04-01
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
卷号76期号:8页码:11143-11155
文章类型Article
摘要Edge-directed single image super-resolution methods have been paid more attentions due to their sharp edge preserving in the recovered high-resolution image. Their core is the high-resolution gradient estimation. In this paper, we propose a novel cross-resolution gradient sharpening function learning to obtain the high-resolution gradient. The main idea of cross-resolution learning is to learn a sharpening function from low-resolution, and use it in high-resolution. Specifically, a blurred low-resolution image is first constructed by performing bicubic down-sampling and up-sampling operations sequentially. The gradient sharpening function considered as a linear transform is learned from blurred low-resolution gradient to the input low-resolution image gradient. After that, the high-resolution gradient is estimated by applying the learned gradient sharpening function to the initial blurred gradient obtained from the bicubic up-sampled of the low-resolution image. Finally, edge-directed single image super-resolution reconstruction is performed to obtain the sharpened high-resolution image. Extensive experiments demonstrate the effectiveness of our method in comparison with the state-of-the-art approaches.
关键词Super-resolution Gradient Magnitude Transformation Linear Transformation Function
WOS标题词Science & Technology ; Technology
DOI10.1007/s11042-016-3656-z
关键词[WOS]RECONSTRUCTION ; LIMITS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61263046 ; 61403376 ; 61175025)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000400570400048
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15262
专题模式识别国家重点实验室_先进数据分析与学习
作者单位1.Nanchang Hangkong Univ, Inst Comp Vis, Nanchang, Jiangxi, Peoples R China
2.Nanchang Hangkong Univ, Key Laborator Jiangxi Prov Image Proc & Pattern R, Nanchang, Jiangxi, Peoples R China
3.Chinese Acad Sci, Inst Automat, NLPR, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Han, Wei,Chu, Jun,Wang, Lingfeng,et al. Edge-directed single image super-resolution via cross-resolution sharpening function learning[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2017,76(8):11143-11155.
APA Han, Wei,Chu, Jun,Wang, Lingfeng,&Pan, Chunhong.(2017).Edge-directed single image super-resolution via cross-resolution sharpening function learning.MULTIMEDIA TOOLS AND APPLICATIONS,76(8),11143-11155.
MLA Han, Wei,et al."Edge-directed single image super-resolution via cross-resolution sharpening function learning".MULTIMEDIA TOOLS AND APPLICATIONS 76.8(2017):11143-11155.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-5.pdf(5043KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Han, Wei]的文章
[Chu, Jun]的文章
[Wang, Lingfeng]的文章
百度学术
百度学术中相似的文章
[Han, Wei]的文章
[Chu, Jun]的文章
[Wang, Lingfeng]的文章
必应学术
必应学术中相似的文章
[Han, Wei]的文章
[Chu, Jun]的文章
[Wang, Lingfeng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-5.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。