CASIA OpenIR  > 类脑智能研究中心
Image Class Prediction by Joint Object, Context, and Background Modeling
Zhang, Chunjie1,2,3; Zhu, Guibo4; Liang, Chao5; Zhang, Yifan6; Huang, Qingming2; Tian, Qi7
2018-02-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
卷号28期号:2页码:428-438
文章类型Article
摘要State-of-the-art image classification methods often use spatial pyramid matching or its variants to make use of the spatial layout of visual features. However, objects may appear at various places with different scales and orientations. Besides, traditionally object-centric-based methods only consider objects and the background without fully exploring the context information. To solve these problems, in this paper we propose a novel image classification method by jointly modeling the object, context, and background information (OCB). OCB consists of three components: 1) locate the positions of objects; 2) determine the context areas of objects; and 3) treat the other areas as the background. We use objectness proposal techniques to select candidate bounding boxes. Boxes with high confidence scores are combined to determine objects' positions. To select the context areas, we use candidate boxes that have relatively lower confidence scores compared with boxes for object location selection. The other areas are viewed as the background. We jointly combine the object, context, and background for image representation and classification. Experiments on six data sets well demonstrate the superiority of the proposed OCB method over other spatial partition methods.
关键词Background Modeling Context Modeling Image Class Prediction Object Modeling
WOS标题词Science & Technology ; Technology
DOI10.1109/TCSVT.2016.2613125
关键词[WOS]CLASSIFICATION ; FEATURES
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61303154)
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000425036400013
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15314
专题类脑智能研究中心
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Res Ctr Brain Inspired Intelligence, Inst Automat, Beijing 100190, Peoples R China
5.Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp, Wuhan 430072, Hubei, Peoples R China
6.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
7.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
推荐引用方式
GB/T 7714
Zhang, Chunjie,Zhu, Guibo,Liang, Chao,et al. Image Class Prediction by Joint Object, Context, and Background Modeling[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2018,28(2):428-438.
APA Zhang, Chunjie,Zhu, Guibo,Liang, Chao,Zhang, Yifan,Huang, Qingming,&Tian, Qi.(2018).Image Class Prediction by Joint Object, Context, and Background Modeling.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,28(2),428-438.
MLA Zhang, Chunjie,et al."Image Class Prediction by Joint Object, Context, and Background Modeling".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 28.2(2018):428-438.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
manuscript-object co(2826KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
t-csvt 1 录用邮件.pdf(108KB) 开放获取--浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Chunjie]的文章
[Zhu, Guibo]的文章
[Liang, Chao]的文章
百度学术
百度学术中相似的文章
[Zhang, Chunjie]的文章
[Zhu, Guibo]的文章
[Liang, Chao]的文章
必应学术
必应学术中相似的文章
[Zhang, Chunjie]的文章
[Zhu, Guibo]的文章
[Liang, Chao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: manuscript-object context and background.pdf
格式: Adobe PDF
文件名: t-csvt 1 录用邮件.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。