CASIA OpenIR  > 类脑智能研究中心
Structured Weak Semantic Space Construction For Visual Categorization
Zhang CJ(张淳杰); Cheng J(程健); Tian Q(田奇)
2017
发表期刊IEEE Transactions on Neural Networks and Learning Systems
期号0页码:0
摘要Visual features have been widely used for image representation and categorization. However, visual features are often inconsistent with human perception. Besides, constructing explicit semantic space is still an open problem. To alleviate these two problems, in this paper, we propose to construct structured weak semantic space for image representation. Exemplar classifier is first trained to separate each training image from other images for weak semantic space construction. However, each exemplar classifier separates one training image from other images, it only has limited semantic separability. Besides, the outputs of exemplar classifiers are inconsistent with each other. We jointly construct the weak semantic space using structured constraint. This is achieved by imposing low-rank constraint on the outputs of exemplar classifiers with sparsity constraint. An alternative optimization procedure is used to learn the exemplar classifiers. Since the proposed method does not dependent on the initial image representation strategy, We can make use of various visual features for efficient exemplar classifier training (e.g. fisher vector based methods and convolutional neural networks based methods). We apply the proposed structured weak semantic space based image representation method for categorization. The experimental results on several public image datasets prove the effectiveness of the proposed method.
关键词Weak Semantic Space Structure Learning Exemplar Classifier Training Visual Categorization Image Classification
DOI10.1109/TNNLS. 2017.2728060
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15317
专题类脑智能研究中心
作者单位1.Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
2.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
3.Department of Computer Sciences, University of Texas at San Antonio. TX, 78249-1604, U.S.A.
推荐引用方式
GB/T 7714
Zhang CJ,Cheng J,Tian Q. Structured Weak Semantic Space Construction For Visual Categorization[J]. IEEE Transactions on Neural Networks and Learning Systems,2017(0):0.
APA Zhang CJ,Cheng J,&Tian Q.(2017).Structured Weak Semantic Space Construction For Visual Categorization.IEEE Transactions on Neural Networks and Learning Systems(0),0.
MLA Zhang CJ,et al."Structured Weak Semantic Space Construction For Visual Categorization".IEEE Transactions on Neural Networks and Learning Systems .0(2017):0.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
08008774.pdf(1950KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
tnnls Structured Wea(151KB) 开放获取--浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang CJ(张淳杰)]的文章
[Cheng J(程健)]的文章
[Tian Q(田奇)]的文章
百度学术
百度学术中相似的文章
[Zhang CJ(张淳杰)]的文章
[Cheng J(程健)]的文章
[Tian Q(田奇)]的文章
必应学术
必应学术中相似的文章
[Zhang CJ(张淳杰)]的文章
[Cheng J(程健)]的文章
[Tian Q(田奇)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 08008774.pdf
格式: Adobe PDF
文件名: tnnls Structured Weak Semantic Space Construction For Visual Categorization 录用邮件.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。