CASIA OpenIR  > 类脑智能研究中心
Image-Specific Classification With Local and Global Discriminations
Zhang CJ(张淳杰); Cheng J(程健); Li ZS(李长升); Tian Q(田奇)
2017
发表期刊IEEE Transactions on Neural Networks and Learning Systems
期号0页码:0
摘要Most image classification methods try to learn classifiers for each class using training images alone. Due to the inter-class and intra-class variations, it would be more effective to take the testing images into consideration for classifier learning. In this brief, we proposes a novel image-specific classification method by combing the local and global discriminations of training images. We adaptively train classifier for each testing image instead of generating classifiers for each class with training images alone. For each testing image, we first select its \emph{k} nearest neighbors in the training set with the corresponding labels for local classifier training. This helps to model the distinctive characters of each testing image. Besides, we also use all the training images for global discrimination modeling. The local and global discriminations are combined for final classification. In this way, we could not only model the specific character of each testing image but also avoid the local optimum by jointly considering all the training images. To evaluate the usefulness of the proposed image-specific classification with local and global discriminations method (ISC-LG), we conduct image classification experiments on several public image datasets. The superior performances over other baseline methods prove the effectiveness of the proposed ISC-LG method.
关键词Image-specific Classification Global Information Local Information Object Categorization
DOI10.1109/TNNLS.2017.2748952
WOS记录号WOS:000443083700045
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15318
专题类脑智能研究中心
作者单位1.Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
2.University of Chinese Academy of Sciences, 100049, Beijing, China.
3.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, P.O.Box 2728, Beijing, China
4.School of Computer Science and Engineering, University of Electronic Science and Technology of China.
5.Department of Computer Sciences, University of Texas at San Antonio. TX, 78249, U.S.A.
推荐引用方式
GB/T 7714
Zhang CJ,Cheng J,Li ZS,et al. Image-Specific Classification With Local and Global Discriminations[J]. IEEE Transactions on Neural Networks and Learning Systems,2017(0):0.
APA Zhang CJ,Cheng J,Li ZS,&Tian Q.(2017).Image-Specific Classification With Local and Global Discriminations.IEEE Transactions on Neural Networks and Learning Systems(0),0.
MLA Zhang CJ,et al."Image-Specific Classification With Local and Global Discriminations".IEEE Transactions on Neural Networks and Learning Systems .0(2017):0.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
FINAL VERSION.pdf(571KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
tnnls Image-Specific(151KB) 开放获取--浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang CJ(张淳杰)]的文章
[Cheng J(程健)]的文章
[Li ZS(李长升)]的文章
百度学术
百度学术中相似的文章
[Zhang CJ(张淳杰)]的文章
[Cheng J(程健)]的文章
[Li ZS(李长升)]的文章
必应学术
必应学术中相似的文章
[Zhang CJ(张淳杰)]的文章
[Cheng J(程健)]的文章
[Li ZS(李长升)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: FINAL VERSION.pdf
格式: Adobe PDF
文件名: tnnls Image-Specific Classification With Local and Global Discriminations 录用邮件.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。