Constructing a Chinese Conversation Corpus for Sentiment Analysis
Zhou, Yujun1,2,3; Li, Changliang1; Xu, Bo1; Xu, Jiaming1; Yang, Lei1,2,3; Xu, Bo1
2017
会议名称the Sixth Conference on Natural Language Processing and Chinese Computing (NLPCC)
会议日期November 8-12, 2017
会议地点Dalian, China
摘要Sentiment analysis plays an important role in many applications. This paper introduces our ongoing work related to the sentiment analysis on Chinese conversation. The main purpose is to construct a Chinese conversation corpus for sentiment analysis and provide a benchmark result on this corpus. To explore the effectiveness of machine learning based approaches for sentiment analysis on Chinese conversation,we firstly collected conversational data from some online English learning websites and our instant messages, and manually annotated it with three sentiment polarities and 22 fine-grained emotion classes. Then we applied multiple representative classification methods to evaluate the corpus. The evaluation results provide good suggestions for the future research. And we will release the corpus with gold standards publicly for research purposes.
关键词Chinese Conversation Short Text Sentiment Analysis Machine Learning Deep Neural Networks
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/15444
专题数字内容技术与服务研究中心_听觉模型与认知计算
通讯作者Li, Changliang
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.Jiangsu Jinling Science and Technology Group Co., Ltd, Nanjing
推荐引用方式
GB/T 7714
Zhou, Yujun,Li, Changliang,Xu, Bo,et al. Constructing a Chinese Conversation Corpus for Sentiment Analysis[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
周玉军_201418014629107_(293KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Yujun]的文章
[Li, Changliang]的文章
[Xu, Bo]的文章
百度学术
百度学术中相似的文章
[Zhou, Yujun]的文章
[Li, Changliang]的文章
[Xu, Bo]的文章
必应学术
必应学术中相似的文章
[Zhou, Yujun]的文章
[Li, Changliang]的文章
[Xu, Bo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 周玉军_201418014629107_NLPCC2017.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。