Multi-task learning for dangerous object detection in autonomous driving
Chen, Yaran1,2; Zhao, Dongbin1,2; Lv, Le1,2; Zhang, Qichao1,2
2018-03-01
发表期刊INFORMATION SCIENCES
卷号432期号:*页码:559-571
文章类型Article
摘要Recently, autonomous driving has been extensively studied and has shown considerable promise. Vision-based dangerous object detection is a crucial technology of autonomous driving. In previous work, dangerous object detection is generally formulated as a typical object detection problem and a distance-based danger assessment problem, separately. These two problems are usually dealt with using two independent models. In fact, vision based object detection and distance prediction present prominent visual relationship. The objects with different distance to the camera have different attributes (pose, size and definition), which are very worthy to be exploited for dangerous object detection. However, these characteristics are usually ignored in previous work. In this paper, we propose a novel multi-task learning (MTL) method to jointly model object detection and distance prediction with a Cartesian product-based multi-task combination strategy. Furthermore, we mathematically prove that the proposed Cartesian product-based combination strategy is more optimal than the linear multi-task combination strategy that is usually used in MTL models, when the multi-task itself is not independent. Systematic experiments show that the proposed approach consistently achieves better object detection and distance prediction performances compared to both the single-task and multi-task dangerous object detection methods. (C) 2017 Elsevier Inc. All rights reserved.
关键词Dangerous Object Detection Autonomous Driving Multi-task Learning Convolutional Neural Network
WOS标题词Science & Technology ; Technology
DOI10.1016/j.ins.2017.08.035
关键词[WOS]RECOGNITION ; VEHICLES ; SYSTEM ; FUSION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China (NSFC)(61573353 ; National Key Research and Development Plan(2016YFB0101000) ; 61533017)
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000424188400035
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/15664
专题复杂系统管理与控制国家重点实验室_深度强化学习
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Chen, Yaran,Zhao, Dongbin,Lv, Le,et al. Multi-task learning for dangerous object detection in autonomous driving[J]. INFORMATION SCIENCES,2018,432(*):559-571.
APA Chen, Yaran,Zhao, Dongbin,Lv, Le,&Zhang, Qichao.(2018).Multi-task learning for dangerous object detection in autonomous driving.INFORMATION SCIENCES,432(*),559-571.
MLA Chen, Yaran,et al."Multi-task learning for dangerous object detection in autonomous driving".INFORMATION SCIENCES 432.*(2018):559-571.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Informationscience.p(3402KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Yaran]的文章
[Zhao, Dongbin]的文章
[Lv, Le]的文章
百度学术
百度学术中相似的文章
[Chen, Yaran]的文章
[Zhao, Dongbin]的文章
[Lv, Le]的文章
必应学术
必应学术中相似的文章
[Chen, Yaran]的文章
[Zhao, Dongbin]的文章
[Lv, Le]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Informationscience.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。