GATING RECURRENT MIXTURE DENSITY NETWORKS FOR ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS
Wang, Wenfu; Xu, Shuang; Xu, Bo
2016-03
会议名称International Conference on Acoustics, Speech and Signal Processing
页码5520-5524
会议日期2016-3-21
会议地点Shanghai, China
摘要Though recurrent neural networks (RNNs) using long short-term memory (LSTM) units can address the issue of long-span dependencies across the linguistic inputs and have achieved the state-of-the-art performance for statistical parametric speech synthesis (SPSS), another limitation of the intrinsic uni-Gaussian nature of mean square error (MSE) objective function still remains. This paper proposes a gating recurrent mixture density network (GRMDN) architecture to jointly address these two problems in neural network based SPSS. What’s more, the gated recurrent unit (GRU), which is much simpler and has more intelligible work mechanism than LSTM, is also investigated as an alternative gating unit in RNN based acoustic modeling. Experimental results show that the proposed GRMDN architecture can synthesize more natural speech than its MSE-trained counterpart and both the two gating units (LSTM and GRU) show comparable performance.
关键词Statistical Parametric Speech Synthesis Gating Units Gru Gating Recurrent Mixture Density Network
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19654
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位Institute of Automation, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Wang, Wenfu,Xu, Shuang,Xu, Bo. GATING RECURRENT MIXTURE DENSITY NETWORKS FOR ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS[C],2016:5520-5524.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ICASSP2016_wang.pdf(404KB)会议论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Wenfu]的文章
[Xu, Shuang]的文章
[Xu, Bo]的文章
百度学术
百度学术中相似的文章
[Wang, Wenfu]的文章
[Xu, Shuang]的文章
[Xu, Bo]的文章
必应学术
必应学术中相似的文章
[Wang, Wenfu]的文章
[Xu, Shuang]的文章
[Xu, Bo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ICASSP2016_wang.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。