First Step Towards End-to-end Parametric TTS Synthesis: Generating Spectral Parameters with Neural Attention
Wang, Wenfu; Xu, Shuang; Xu, Bo
2016-09
会议名称Interspeech
页码2243-2247
会议日期2016-9-8
会议地点San Francisco, USA
摘要In conventional neural networks (NN) based parametric text-to-speech (TTS) synthesis frameworks, text analysis and acoustic modeling are typically processed separately, leading to some limitations. On one hand, much significant human expertise is normally required in text analysis, which presents a laborious task for researchers; on the other hand, training of the NN-based acoustic models still relies on the hidden Markov model (HMM) to obtain frame-level alignments. This acquisition process normally goes through multiple complicated stages. The complex pipeline makes constructing a NN-based parametric TTS system a challenging task. This paper attempts to bypass these limitations using a novel end-to-end parametric TTS synthesis framework, i.e. the text analysis and acoustic modeling are integrated together employing an attention-based recurrent neural network. Thus the alignments can be learned automatically. Preliminary experimental results show that the proposed system can generate moderately smooth spectral parameters and synthesize fairly intelligible speech on short utterances (less than 8 Chinese characters).
关键词Parametric Tts Synthesis End-to-end Attention Based Recurrent Neural Network Acoustic Modeling
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19657
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位Institute of Automation, Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Wang, Wenfu,Xu, Shuang,Xu, Bo. First Step Towards End-to-end Parametric TTS Synthesis: Generating Spectral Parameters with Neural Attention[C],2016:2243-2247.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
IS2016_wang.PDF(191KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Wenfu]的文章
[Xu, Shuang]的文章
[Xu, Bo]的文章
百度学术
百度学术中相似的文章
[Wang, Wenfu]的文章
[Xu, Shuang]的文章
[Xu, Bo]的文章
必应学术
必应学术中相似的文章
[Wang, Wenfu]的文章
[Xu, Shuang]的文章
[Xu, Bo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IS2016_wang.PDF
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。