Named Entity Recognition with Gated Convolutional Neural Networks
Wang CQ(汪春奇)1,2; Chen W(陈玮)1; Xu B(徐波)1
2017
会议名称第十六届全国计算语言学学术会议
页码110-121
会议日期2017
会议地点南京
摘要

Most state-of-the-art models for named entity recognition (NER) rely on recurrent neural networks (RNNs), in particular long short-term memory (LSTM). Those models learn local and global fea- tures automatically by RNNs so that hand-craft features can be dis- carded, totally or partly. Recently, convolutional neural networks (CNNs) have achieved great success on computer vision. However, for NER prob- lems, they are not well studied. In this work, we propose a novel archi- tecture for NER problems based on GCNN — CNN with gating mech- anism. Compared with RNN based NER models, our proposed model has a remarkable advantage on training efficiency. We evaluate the pro- posed model on three data sets in two significantly different languages — SIGHAN bakeoff 2006 MSRA portion for simplified Chinese NER and CityU portion for traditional Chinese NER, CoNLL 2003 shared task English portion for English NER. Our model obtains state-of-the-art performance on these three data sets.

 
关键词Named Entity Recognition Convolutional Neural Network Sequence Labeling
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19688
专题数字内容技术与服务研究中心_听觉模型与认知计算
作者单位1.中科院自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
Wang CQ,Chen W,Xu B. Named Entity Recognition with Gated Convolutional Neural Networks[C],2017:110-121.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
submission.pdf(319KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang CQ(汪春奇)]的文章
[Chen W(陈玮)]的文章
[Xu B(徐波)]的文章
百度学术
百度学术中相似的文章
[Wang CQ(汪春奇)]的文章
[Chen W(陈玮)]的文章
[Xu B(徐波)]的文章
必应学术
必应学术中相似的文章
[Wang CQ(汪春奇)]的文章
[Chen W(陈玮)]的文章
[Xu B(徐波)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: submission.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。