CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
Multiple Cayley-Klein metric learning
Bi, Yanhong1,2; Fan, Bin1; Wu, Fuchao1; Bin Fan
2017-09-21
发表期刊PLOS ONE
卷号12期号:9页码:1-15
文章类型Article
摘要As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating interclass instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.
关键词Metric Learning Cayley-klein Metric
WOS标题词Science & Technology
DOI10.1371/journal.pone.0184865
关键词[WOS]NEAREST-NEIGHBOR CLASSIFICATION ; VERIFICATION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61375043 ; 61472119 ; 61672032)
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000411339900053
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19695
专题模式识别国家重点实验室_机器人视觉
通讯作者Bin Fan
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Bi, Yanhong,Fan, Bin,Wu, Fuchao,et al. Multiple Cayley-Klein metric learning[J]. PLOS ONE,2017,12(9):1-15.
APA Bi, Yanhong,Fan, Bin,Wu, Fuchao,&Bin Fan.(2017).Multiple Cayley-Klein metric learning.PLOS ONE,12(9),1-15.
MLA Bi, Yanhong,et al."Multiple Cayley-Klein metric learning".PLOS ONE 12.9(2017):1-15.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
PLOS-ONE-2017.pdf(2897KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bi, Yanhong]的文章
[Fan, Bin]的文章
[Wu, Fuchao]的文章
百度学术
百度学术中相似的文章
[Bi, Yanhong]的文章
[Fan, Bin]的文章
[Wu, Fuchao]的文章
必应学术
必应学术中相似的文章
[Bi, Yanhong]的文章
[Fan, Bin]的文章
[Wu, Fuchao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: PLOS-ONE-2017.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。