CASIA OpenIR  > 智能感知与计算研究中心
Fast Object Detection at Constrained Energy
Jingyu Liu1; Yongzhen Huang1; Junran Peng1; Jun Yao2; Liang Wang1
2016
发表期刊IEEE Trans. on Emerging Topics in Computing
期号1-1页码:99
摘要
Visual computing, e.g., automatic object detection, in mobile
devices attracts more and more attention recently, in which fast models
at constrained energy cost is a critical problem. In this paper, we
introduce our work on designing models based on deep learning for
200 classes object detection in mobile devices, as well as exploring
trade-off between accuracy and energy cost. In particular, we investigate
several methods of extracting object proposals and integrate them into
the fast-RCNN framework for object detection. Extensive experiments
are conducted using the Jetson TK1 SOC platform and the Alienware-15 laptop, including detailed parameters evaluation with respect to
accuracy, energy cost and speed. From these experiments, we conclude
how to obtain good balance between accuracy and energy cost, which
might provide guidance to design effective and efficient object detection
models on mobile devices.
关键词Object Detection Constrained Energy Fast-rcnn
WOS记录号WOS:000443894400010
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19701
专题智能感知与计算研究中心
作者单位1.中科院自动化所
2.华为有限公司
推荐引用方式
GB/T 7714
Jingyu Liu,Yongzhen Huang,Junran Peng,et al. Fast Object Detection at Constrained Energy[J]. IEEE Trans. on Emerging Topics in Computing,2016(1-1):99.
APA Jingyu Liu,Yongzhen Huang,Junran Peng,Jun Yao,&Liang Wang.(2016).Fast Object Detection at Constrained Energy.IEEE Trans. on Emerging Topics in Computing(1-1),99.
MLA Jingyu Liu,et al."Fast Object Detection at Constrained Energy".IEEE Trans. on Emerging Topics in Computing .1-1(2016):99.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
paper-v3.pdf(2002KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jingyu Liu]的文章
[Yongzhen Huang]的文章
[Junran Peng]的文章
百度学术
百度学术中相似的文章
[Jingyu Liu]的文章
[Yongzhen Huang]的文章
[Junran Peng]的文章
必应学术
必应学术中相似的文章
[Jingyu Liu]的文章
[Yongzhen Huang]的文章
[Junran Peng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: paper-v3.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。