CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Multi-type attributes driven multi-camera person re-identification
Chi Su1; Shiliang Zhang1; Junliang Xing2; Wen Gao1; Qi Tian3
2017
发表期刊Pattern Recognition
期号75页码:77-89
摘要One of the major challenges in person Re-Identification (ReID) is the inconsistent visual appearance of a person. Current works on visual feature and distance metric learning have achieved significant achievements, but still suffer from the limited robustness to pose variations, viewpoint changes, etc., and the high computational complexity. This makes person ReID among multiple cameras still challenging. This work is motivated to learn mid-level human attributes which are robust to visual appearance variations and could be used as efficient features for person matching. We propose a weakly supervised multi-type attribute learning framework which considers the contextual cues among attributes and progressively boosts the accuracy of attributes only using a limited number of labeled data. Specifically, this framework involves a three-stage training. A deep Convolutional Neural Network (dCNN) is first trained on an independent dataset labeled with attributes. Then it is fine-tuned on another dataset only labeled with person IDs using our defined triplet loss. Finally, the updated dCNN predicts attribute labels for the target dataset, which is combined with the independent dataset for the final round of fine-tuning. The predicted attributes, namely deep attributes exhibit promising generalization ability across different datasets. By directly using the deep attributes with simple Cosine distance, we have obtained competitive accuracy on four person ReID datasets. Experiments also show that a simple distance metric learning modular further boosts our method, making it outperform many recent works.
关键词Deep Attributes Person Re-identification
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19750
专题模式识别国家重点实验室_视频内容安全
作者单位1.National Engineering Laboratory for Video Technology, Peking University, Beijing, China
2.National Laboratory of Pattern Recognition, Insititue of Automation, Chinese Academy of Sciences
3.Department of Computer Science, University of Texas at San Antonio, San Antonio, USA
推荐引用方式
GB/T 7714
Chi Su,Shiliang Zhang,Junliang Xing,et al. Multi-type attributes driven multi-camera person re-identification[J]. Pattern Recognition,2017(75):77-89.
APA Chi Su,Shiliang Zhang,Junliang Xing,Wen Gao,&Qi Tian.(2017).Multi-type attributes driven multi-camera person re-identification.Pattern Recognition(75),77-89.
MLA Chi Su,et al."Multi-type attributes driven multi-camera person re-identification".Pattern Recognition .75(2017):77-89.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
PR18MultiTypeAttribu(3413KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chi Su]的文章
[Shiliang Zhang]的文章
[Junliang Xing]的文章
百度学术
百度学术中相似的文章
[Chi Su]的文章
[Shiliang Zhang]的文章
[Junliang Xing]的文章
必应学术
必应学术中相似的文章
[Chi Su]的文章
[Shiliang Zhang]的文章
[Junliang Xing]的文章
相关权益政策
暂无数据
收藏/分享
文件名: PR18MultiTypeAttributesDrivenMultiCameraPersonReIdentification.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。