Real-time Vehicle Detection using Haar-SURF Mixed Features and Gentle AdaBoost Classifier
Sun Shujuan; Xu Zhize; Wang Xingang; Huang Guan; Wu Wenqi; Xu De
2015
会议名称Control and Decision Conference
会议日期23-25 May 5015
会议地点Qingdao, China
摘要On-road vehicle detection is one of the key techniques in intelligent driver systems and has been an active research area in the past years. Considering the high demand for real-time and robust vehicle detection method, a novel vehicle detection method has been proposed. This paper presents a real-time vehicle detection algorithm which uses cascade classifier and Gentle AdaBoost classifier with Haar-SURF mixed features. We built up a large database including vehicles and non-vehicles for training and testing. A pipeline is then presented to solve the detection problem. Firstly, lane detection is employed to reduce the search space to a ROI. Secondly, the cascade classifier is applied to generate some candidates. Finally, the single decision classifier evaluates the candidates and provides the target vehicle. The experiments and on-road tests prove it to be a real-time and robust algorithm. In addition, we demonstrate the effectiveness and practicability of the algorithm by porting it to an Android mobile.
关键词Vehicles Training Vehicle Detection Feature Extraction Databases Classification Algorithms Testing
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19772
专题精密感知与控制研究中心_精密感知与控制
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Sun Shujuan,Xu Zhize,Wang Xingang,et al. Real-time Vehicle Detection using Haar-SURF Mixed Features and Gentle AdaBoost Classifier[C],2015.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Real-time Vehicle De(428KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun Shujuan]的文章
[Xu Zhize]的文章
[Wang Xingang]的文章
百度学术
百度学术中相似的文章
[Sun Shujuan]的文章
[Xu Zhize]的文章
[Wang Xingang]的文章
必应学术
必应学术中相似的文章
[Sun Shujuan]的文章
[Xu Zhize]的文章
[Wang Xingang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Real-time Vehicle Detection using Haar-SURF Mixed Features and Gentle AdaBoost Classifier.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。