CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
CSFM: COMMUNITY-BASED STRUCTURE FROM MOTION
Cui Hainan(崔海楠); Shen Shuhan(申抒含); Gao Xiang(高翔); Hu Zhanyi(胡占义)
2017
会议名称IEEE International Conference on Image Processing (ICIP)
会议日期2017-09
会议地点Beijing, China
摘要
Structure-from-Motion approaches could be broadly divided
into two classes: incremental and global. While incremental
manner is robust to outliers, it suffers from error accumulation
and heavy computation load. To tackle these problems, global
manner simultaneously estimates all camera poses, but is usu-
ally sensitive to epipolar geometry outliers. In this paper, we
propose an adaptive community-based SfM (CSfM) method
which takes both robustness and efficiency into consideration.
First, the epipolar geometry graph is parted into independent
communities. Then, the reconstruction problem is solved for
each community in parallel. Finally, a global similarity aver-
aging method is proposed to merge the reconstruction results
by solving three convex L1 optimization problems. Experi-
mental results demonstrate our method performs better than
many of the global SfM approaches in terms of efficiency,
while achieves similar or better reconstruction accuracy and
robustness than many of the state-of-the-art incremental SfM
approaches.
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/19774
专题模式识别国家重点实验室_机器人视觉
推荐引用方式
GB/T 7714
Cui Hainan,Shen Shuhan,Gao Xiang,et al. CSFM: COMMUNITY-BASED STRUCTURE FROM MOTION[C],2017.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
ICIP2017_Cuihainan.p(6880KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui Hainan(崔海楠)]的文章
[Shen Shuhan(申抒含)]的文章
[Gao Xiang(高翔)]的文章
百度学术
百度学术中相似的文章
[Cui Hainan(崔海楠)]的文章
[Shen Shuhan(申抒含)]的文章
[Gao Xiang(高翔)]的文章
必应学术
必应学术中相似的文章
[Cui Hainan(崔海楠)]的文章
[Shen Shuhan(申抒含)]的文章
[Gao Xiang(高翔)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ICIP2017_Cuihainan.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。