Personality-based refinement for sentiment classification in microblog
Lin, Junjie1; Mao, Wenji1,2; Zeng, Daniel D.1,2
2017-09-15
发表期刊KNOWLEDGE-BASED SYSTEMS
卷号132期号:132页码:204-214
文章类型Article
摘要Microblog has become one of the most widely used social media for people to share information and express opinions. As information propagates fast in social network, understanding and analyzing public sentiment implied in user-generated content is beneficial for many fields and has been applied to applications such as social management, business and public security. Most previous work on sentiment analysis makes no distinctions of the tweets by different users and ignores the diverse word use of people. As some sentiment expressions are used by specific groups of people, the corresponding textual sentiment features are often neglected in the analysis process. On the other hand, previous psychological findings have shown that personality influences the ways people write and talk, suggesting that people with same personality traits tend to choose similar sentiment expressions. Inspired by this, in this paper we propose a method to facilitate sentiment classification in microblog based on personality traits. To this end, we first develop a rule-based method to predict users' personality traits based on the most well studied personality model, the Big Five model. In order to leverage more effective but not widely used sentiment features, we then extract those features grouped by different personality traits and construct personality-based sentiment classifiers. Moreover, we adopt an ensemble learning strategy to integrate traditional textual feature based and our personality-based sentiment classification. Experimental studies on Chinese microblog dataset show the effectiveness of our method in refining the performance of both the traditional and state-of-the-art sentiment classifiers. Our work is among the first to explicitly explore the role of user's personality in social media analytics and its application in sentiment classification. (C) 2017 Elsevier B.V. All rights reserved.
关键词Sentiment Classification Social Media Analytics Personality Prediction Big Five Model
WOS标题词Science & Technology ; Technology
DOI10.1016/j.knosys.2017.06.031
关键词[WOS]TEXT ; WEB
收录类别SCI ; SSCI
语种英语
项目资助者National Natural Science Foundation of China(61671450 ; Ministry of Science and Technology of China(2016YFC1200702) ; 71621002)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000407184900017
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19846
专题复杂系统管理与控制国家重点实验室_互联网大数据与信息安全
作者单位1.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
推荐引用方式
GB/T 7714
Lin, Junjie,Mao, Wenji,Zeng, Daniel D.. Personality-based refinement for sentiment classification in microblog[J]. KNOWLEDGE-BASED SYSTEMS,2017,132(132):204-214.
APA Lin, Junjie,Mao, Wenji,&Zeng, Daniel D..(2017).Personality-based refinement for sentiment classification in microblog.KNOWLEDGE-BASED SYSTEMS,132(132),204-214.
MLA Lin, Junjie,et al."Personality-based refinement for sentiment classification in microblog".KNOWLEDGE-BASED SYSTEMS 132.132(2017):204-214.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Personality-based re(965KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Junjie]的文章
[Mao, Wenji]的文章
[Zeng, Daniel D.]的文章
百度学术
百度学术中相似的文章
[Lin, Junjie]的文章
[Mao, Wenji]的文章
[Zeng, Daniel D.]的文章
必应学术
必应学术中相似的文章
[Lin, Junjie]的文章
[Mao, Wenji]的文章
[Zeng, Daniel D.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Personality-based refinement for sentiment classification in microblog.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。