A Novel Biologically-inspired Visual Cognition Model - Automatic Extraction of Semantics, Formation of Integrated Concepts and Re-selection Features for Ambiguity
P. Yin; H. Qiao; W. Wu; L. Qi; Y. L. Li; S. Zhong; B. Zhang
2017
发表期刊IEEE Transactions on Cognitive and Developmental Systems
卷号PP期号:99页码:1-1
摘要Techniques that integrate neuroscience and information science benefit both fields. Many related models have been proposed in computer vision; however, in general, the robustness and recognition precision are still key problems in object recognition models. In this paper, inspired by the process by which humans recognize objects and its biological mechanisms, a new integrated and dynamic framework is proposed that mimics the semantic extraction, concept formation and feature re-selection found in human visual processing. The main contributions of the proposed model are as follows: (1) Semantic feature extraction: Local semantic features are learned from episodic features extracted from raw images using a deep neural network; (2) Integrated concept formation: Concepts are formed using the local semantic information and structural information is learned through a network; (3) Feature re-selection: When ambiguity is detected during the recognition process, distinctive features based on the differences between the ambiguous candidates are re-selected for recognition. Experimental results on four datasets show that—compared with other methods—the new proposed model is more robust and achieves higher precision for visual recognition, especially when the input samples are semantically ambiguous. Meanwhile, the introduced biological mechanisms further strengthen the interaction between neuroscience and information science.
关键词Biologically Inspired Model Object Recognition Semantic Learning Structural Learning
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19891
专题复杂系统管理与控制国家重点实验室_机器人理论与应用
推荐引用方式
GB/T 7714
P. Yin,H. Qiao,W. Wu,et al. A Novel Biologically-inspired Visual Cognition Model - Automatic Extraction of Semantics, Formation of Integrated Concepts and Re-selection Features for Ambiguity[J]. IEEE Transactions on Cognitive and Developmental Systems,2017,PP(99):1-1.
APA P. Yin.,H. Qiao.,W. Wu.,L. Qi.,Y. L. Li.,...&B. Zhang.(2017).A Novel Biologically-inspired Visual Cognition Model - Automatic Extraction of Semantics, Formation of Integrated Concepts and Re-selection Features for Ambiguity.IEEE Transactions on Cognitive and Developmental Systems,PP(99),1-1.
MLA P. Yin,et al."A Novel Biologically-inspired Visual Cognition Model - Automatic Extraction of Semantics, Formation of Integrated Concepts and Re-selection Features for Ambiguity".IEEE Transactions on Cognitive and Developmental Systems PP.99(2017):1-1.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[P. Yin]的文章
[H. Qiao]的文章
[W. Wu]的文章
百度学术
百度学术中相似的文章
[P. Yin]的文章
[H. Qiao]的文章
[W. Wu]的文章
必应学术
必应学术中相似的文章
[P. Yin]的文章
[H. Qiao]的文章
[W. Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。