CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
一种基于双通道LDA模型的汉语词义表示与归纳方法
王少楠1; 宗成庆1,2
2016-08
发表期刊计算机学报
卷号39期号:8页码:1652-1666
摘要语义记忆是人类理解自然语言的基础.人类理解语言的过程可以看作是对词义进行编码、对语义记忆进行检索,进而对词义进行解码的过程.因此,对词义进行合理地表示是计算机理解语言的关键步骤.该文总结分析了已有的词义表示方法与人脑词义表征的关系,针对汉语词汇的歧义现象,重点阐述了如何从歧义词所处的上下文中最大限度地自动获取关于歧义词的词义信息,并将这些信息整合,通过一系列的特征集合表示歧义词的词义.具体地说,该文将出现在歧义词上下文语境中有明确含义的实词作为模型的输入,同时在上下文中获取可以表示歧义词词义的其他特征,最终将这两种信息通过贝叶斯概率模型整合在一起,共同实现歧义词的词义表示和归纳.实验表明,该文提出的方法可以得到更好的词义表示和归纳效果.
其他摘要
Semantic memory is the foundation of human language understanding. Human brain needs to encode, retrieve and decode word meanings for language understanding. The semantic representation is the key step to develop natural language processing systems. Some studies have shown that the formation of concepts is affected by the interaction of human brain and the real world, and the concepts in human brain contain rich forms of information including vision, perception and language. Based on the distributional hypothesis which states that “similar words occur in similar contexts”, the concepts are represented as vectors by calculating the co-occurrence frequency of each word and its statistical features. In this way, word representation in computer can be seen as the semantic representation in human brain. This article mainly focuses on how to represent word senses and do word senses induction in natural language text. We first investigate the relation between computational models of word representation and semantic representation in human brain. Based on word similarity experiments, we have verified that word representations by statistical methods can capture the relationship of similarity between words in human brain. 
关键词词义表示 词义归纳 词义消歧 主题模型 双通道主题模型
关键词[WOS]词义表示 ;  词义归纳 ;  词义消歧 ;  主题模型 ; 双通道主题模型
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19933
专题模式识别国家重点实验室_自然语言处理
作者单位1.中国科学院自动化研究所模式识别国家重点实验室
2.中国科学院脑科学与智能技术卓越创新中心
推荐引用方式
GB/T 7714
王少楠,宗成庆. 一种基于双通道LDA模型的汉语词义表示与归纳方法[J]. 计算机学报,2016,39(8):1652-1666.
APA 王少楠,&宗成庆.(2016).一种基于双通道LDA模型的汉语词义表示与归纳方法.计算机学报,39(8),1652-1666.
MLA 王少楠,et al."一种基于双通道LDA模型的汉语词义表示与归纳方法".计算机学报 39.8(2016):1652-1666.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
4王少楠一种基于双通道LDA模型的汉语词(1540KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王少楠]的文章
[宗成庆]的文章
百度学术
百度学术中相似的文章
[王少楠]的文章
[宗成庆]的文章
必应学术
必应学术中相似的文章
[王少楠]的文章
[宗成庆]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 4王少楠一种基于双通道LDA模型的汉语词义表示与归纳方法-201672183020.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。