Automatic recognition system of welding seam type based on SVM method
Fan, Junfeng1,2; Jing, Fengshui1,2; Fang, Zaojun1; Tan, Min1,2
2017-09-01
发表期刊INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
卷号92期号:1-4页码:989-999
文章类型Article
摘要In this paper, an automatic recognition system of welding seam type based on support vector machine (SVM) method is presented. The hardware of the proposed system consists of an industry robot with six degrees of freedom, a vision sensor, and a computer. The system has two parts including input feature vector computation and model building. In the input feature vector computation part, the depth values of a series of points of the welding joint are taken as feature vector, which are determined by four steps including main line extraction of the laser stripe, normalization of the laser stripe, selection of the left and right edge points of the welding joint, and normalization of feature vectors. In the model building part, SVM-based modeling method is used to achieve welding seam type recognition. At first, RBF kernel function is employed for classification of welding seam types. Then, the parameters of RBF are determined by a grid search method using cross-validation. After the optimal parameters of RBF being determined, the SVM model is built, and it could be used to predict welding seam type. Finally, a series of welding seam type recognition experiments are implemented. Experimental results show that the proposed system can achieve welding seam type recognition accurately and the computation cost can be reduced compared with previous methods.
关键词Welding Seam Type Recognition Structured-light Vision Svm Method Feature Extraction
WOS标题词Science & Technology ; Technology
DOI10.1007/s00170-017-0202-8
关键词[WOS]GTAW PROCESS ; TRACKING ; SENSOR ; ACQUISITION ; INFORMATION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61305024 ; Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61421004) ; 61273337 ; 61573358)
WOS研究方向Automation & Control Systems ; Engineering
WOS类目Automation & Control Systems ; Engineering, Manufacturing
WOS记录号WOS:000407815500079
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19951
专题复杂系统管理与控制国家重点实验室_先进机器人
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Fan, Junfeng,Jing, Fengshui,Fang, Zaojun,et al. Automatic recognition system of welding seam type based on SVM method[J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2017,92(1-4):989-999.
APA Fan, Junfeng,Jing, Fengshui,Fang, Zaojun,&Tan, Min.(2017).Automatic recognition system of welding seam type based on SVM method.INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,92(1-4),989-999.
MLA Fan, Junfeng,et al."Automatic recognition system of welding seam type based on SVM method".INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY 92.1-4(2017):989-999.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
15{Automatic recogni(2124KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Junfeng]的文章
[Jing, Fengshui]的文章
[Fang, Zaojun]的文章
百度学术
百度学术中相似的文章
[Fan, Junfeng]的文章
[Jing, Fengshui]的文章
[Fang, Zaojun]的文章
必应学术
必应学术中相似的文章
[Fan, Junfeng]的文章
[Jing, Fengshui]的文章
[Fang, Zaojun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 15{Automatic recognition system of welding seam type based on SVM method}.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。