Robust C-Loss Kernel Classifiers
Xu, Guibiao1; Hu, Bao-Gang1; Principe, Jose C.2
2018-03-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号29期号:3页码:510-522
文章类型Article
摘要The correntropy-induced loss (C-loss) function has the nice property of being robust to outliers. In this paper, we study the C-loss kernel classifier with the Tikhonov regularization term, which is used to avoid overfitting. After using the half-quadratic optimization algorithm, which converges much faster than the gradient optimization algorithm, we find out that the resulting C-loss kernel classifier is equivalent to an iterative weighted least square support vector machine (LS-SVM). This relationship helps explain the robustness of iterative weighted LS-SVM from the correntropy and density estimation perspectives. On the large-scale data sets which have low-rank Gram matrices, we suggest to use incomplete Cholesky decomposition to speed up the training process. Moreover, we use the representer theorem to improve the sparseness of the resulting C-loss kernel classifier. Experimental results confirm that our methods are more robust to outliers than the existing common classifiers.
关键词Correntropy Half-quadratic (Hq) Optimization Kernel Classifier Loss Function
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2016.2637351
关键词[WOS]SUPPORT VECTOR MACHINES ; LABEL NOISE ; DATA SETS ; CLASSIFICATION ; CORRENTROPY ; ALGORITHMS ; MINIMIZATION ; REGRESSION ; FRAMEWORK ; SIGNAL
收录类别SCI
语种英语
项目资助者NSFC(61273196 ; China Scholarship Council within Computational NeuroEngineering Laboratory ; 61573348)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000426344600001
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/19986
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Univ Florida, Dept Elect & Comp Engn, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
推荐引用方式
GB/T 7714
Xu, Guibiao,Hu, Bao-Gang,Principe, Jose C.. Robust C-Loss Kernel Classifiers[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(3):510-522.
APA Xu, Guibiao,Hu, Bao-Gang,&Principe, Jose C..(2018).Robust C-Loss Kernel Classifiers.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(3),510-522.
MLA Xu, Guibiao,et al."Robust C-Loss Kernel Classifiers".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.3(2018):510-522.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Robust C-Loss Kernel(3169KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Guibiao]的文章
[Hu, Bao-Gang]的文章
[Principe, Jose C.]的文章
百度学术
百度学术中相似的文章
[Xu, Guibiao]的文章
[Hu, Bao-Gang]的文章
[Principe, Jose C.]的文章
必应学术
必应学术中相似的文章
[Xu, Guibiao]的文章
[Hu, Bao-Gang]的文章
[Principe, Jose C.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Robust C-Loss Kernel Classifiers.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。