CASIA OpenIR  > 模式识别国家重点实验室  > 语音交互
基于优化卷积神经网络结构的交通标志识别
王晓斌1; 黄金杰1; 刘文举2
2017-02-10
发表期刊计算机应用
卷号37期号:2页码:530-534
其他摘要In the existing algorithms for traffic sign recognition, sometimes the training time is short but the recognition rate is low, and other times the recognition rate is high but the training time is long. To resolve these problems, the Convolutional Neural Network ( CNN) architecture was optimized by using Batch Normalization ( BN) method, Greedy LayerWise Pretraining ( GLP) method and replacing classifier with Support Vector Machine ( SVM) , and a new traffic sign recognition algorithm based on optimized CNN architecture was proposed. BN method was used to change the data distribution
of the middle layer, and the output data of convolutional layer was normalized to the mean value of 0 and the variance value of 1, thus accelerating the training convergence and reducing the training time. By using the GLP method, the first layer of convolutional network was trained with its parameters preserved when the training was over, then the second layer was also trained with the parameters preserved until all the convolution layers were trained completely. The GLP method can effectively improve the recognition rate of the convolutional network. The SVM classifier only focused on the samples with error classification and no longer processed the correct samples, thus speeding up the training. The experiments were conducted on Germany traffic sign recognition benchmark, the results showed that compared with the traditional CNN, the training time of the new algorithm was reduced by 20. 67% , and the recognition rate of the new algorithm reached 98. 24% . The experimental results prove that the new algorithm greatly shortens the training time and reached a high recognition rate by optimizing the structure of the traditional CNN.

关键词卷积神经网络 批量归一化 贪婪预训练 支持向量机
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20010
专题模式识别国家重点实验室_语音交互
通讯作者刘文举
作者单位1.哈尔滨理工大学 自动化学院
2.中国科学院 自动化研究所
推荐引用方式
GB/T 7714
王晓斌,黄金杰,刘文举. 基于优化卷积神经网络结构的交通标志识别[J]. 计算机应用,2017,37(2):530-534.
APA 王晓斌,黄金杰,&刘文举.(2017).基于优化卷积神经网络结构的交通标志识别.计算机应用,37(2),530-534.
MLA 王晓斌,et al."基于优化卷积神经网络结构的交通标志识别".计算机应用 37.2(2017):530-534.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
王晓斌,“基于优化卷积神经网络结构的交通(292KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王晓斌]的文章
[黄金杰]的文章
[刘文举]的文章
百度学术
百度学术中相似的文章
[王晓斌]的文章
[黄金杰]的文章
[刘文举]的文章
必应学术
必应学术中相似的文章
[王晓斌]的文章
[黄金杰]的文章
[刘文举]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 王晓斌,“基于优化卷积神经网络结构的交通标志识别,”.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。