CASIA OpenIR  > 模式识别国家重点实验室  > 视频内容安全
Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation
Gao, Shan1; Ye, Qixiang2; Xing, Junliang3; Kuijper, Arjan4; Han, Zhenjun2; Jiao, Jianbin2; Ji, Xiangyang1
2017-12-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号26期号:12页码:5575-5589
文章类型Article
摘要Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.
关键词Multiple Person Tracking Group Tracking Rgb-d Data Topology
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2017.2708901
关键词[WOS]MULTITARGET TRACKING ; MULTIOBJECT TRACKING ; MULTIPERSON TRACKING ; PEDESTRIAN DETECTION ; DATA ASSOCIATION ; CRF MODEL ; MOTION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61325003 ; China Post-doctoral Science Foundation(2016M601028) ; 61620106005 ; 61601466 ; 61672519)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000409526000002
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20031
专题模式识别国家重点实验室_视频内容安全
作者单位1.Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
3.Chinese Acad Sci CASIA, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
4.Technol Univ Darmstadt, Fraunhofer Inst Comp Graph Res, D-64283 Darmstadt, Germany
推荐引用方式
GB/T 7714
Gao, Shan,Ye, Qixiang,Xing, Junliang,et al. Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2017,26(12):5575-5589.
APA Gao, Shan.,Ye, Qixiang.,Xing, Junliang.,Kuijper, Arjan.,Han, Zhenjun.,...&Ji, Xiangyang.(2017).Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.IEEE TRANSACTIONS ON IMAGE PROCESSING,26(12),5575-5589.
MLA Gao, Shan,et al."Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation".IEEE TRANSACTIONS ON IMAGE PROCESSING 26.12(2017):5575-5589.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TIP17BeyondGroup.pdf(5475KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Shan]的文章
[Ye, Qixiang]的文章
[Xing, Junliang]的文章
百度学术
百度学术中相似的文章
[Gao, Shan]的文章
[Ye, Qixiang]的文章
[Xing, Junliang]的文章
必应学术
必应学术中相似的文章
[Gao, Shan]的文章
[Ye, Qixiang]的文章
[Xing, Junliang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TIP17BeyondGroup.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。