CASIA OpenIR  > 模式识别国家重点实验室  > 图像与视频分析
Densely Connected Deconvolutional Network For Senantic Segmentation
Fu, Jun; Liu, Jing; Wang, Yuhang; Lu, Hanqing
2017
Conference NameIEEE International Conference on Image Processing
Conference Date2017.9.17-9.20
Conference PlaceBeijing,China
Document Type会议论文
Identifierhttp://ir.ia.ac.cn/handle/173211/20117
Collection模式识别国家重点实验室_图像与视频分析
Recommended Citation
GB/T 7714
Fu, Jun,Liu, Jing,Wang, Yuhang,et al. Densely Connected Deconvolutional Network For Senantic Segmentation[C],2017.
Files in This Item: Download All
File Name/Size DocType Version Access License
付君_DENSELY CONNECTED(724KB)会议论文 开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Fu, Jun]'s Articles
[Liu, Jing]'s Articles
[Wang, Yuhang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Fu, Jun]'s Articles
[Liu, Jing]'s Articles
[Wang, Yuhang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Fu, Jun]'s Articles
[Liu, Jing]'s Articles
[Wang, Yuhang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 付君_DENSELY CONNECTED DECONVOLUTIONAL NETWORK FOR SEMANTIC.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.