Learning to recognition from Bing Clickture data
Li, Chenghua1,2; Song, Qiang1,2; Wang, Yuhang1,2; Song, Hang1; Kang, Qi4; Cheng, Jian1,2,3; Lu, Hanqing1,2
2016
会议名称IEEE International Conference on Multimedia & Expo Workshops
会议日期2016.7.11-7.15
会议地点Seattle, USA
摘要MSR Image Recognition Challenge (IRC) 2016 tries to deal with designing a dog breeds recognition system based on Clickture-Dog dataset. To address the task, we proposed an effective method with systematic strategies as follows. We presented a data cleaning method using faster-rcnn to learn a dog detector. Besides, we ensembeled a series of CNN models to enhance the robustness. A dense evaluation strategy was carried out to boost the test accuracy. Finally, we achieved the first prize of this challenge with 89.65% top-5 accuracy. 
关键词Clickture Data Cnns Recognition
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/20139
专题模式识别国家重点实验室_图像与视频分析
作者单位1.Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences
3.Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences
4.Beijing Institute Of Technology
推荐引用方式
GB/T 7714
Li, Chenghua,Song, Qiang,Wang, Yuhang,et al. Learning to recognition from Bing Clickture data[C],2016.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Learning to recognit(7916KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Chenghua]的文章
[Song, Qiang]的文章
[Wang, Yuhang]的文章
百度学术
百度学术中相似的文章
[Li, Chenghua]的文章
[Song, Qiang]的文章
[Wang, Yuhang]的文章
必应学术
必应学术中相似的文章
[Li, Chenghua]的文章
[Song, Qiang]的文章
[Wang, Yuhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Learning to recognition from Bing Clickture data.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。