Long short-term memory model for traffic congestion prediction with online open data
Chen, Yuanyuan1,2; Lv, Yisheng1; Li, Zhenjiang1; Wang, Fei-Yue1,3
2016
会议名称2016 IEEE 19th International Conference on Intelligent Transportation Systems
会议日期1-4 Nov. 2016
会议地点Rio de Janeiro, Brazil
摘要Traffic congestion in metropolitan areas has become more and more serious. Over the past decades, many academic and industrial efforts have been made to alleviate this problem, among which providing accurate, timely and predictive traffic conditions is a promising approach. Nowadays, online open data have rich traffic related information. Typical such resources include official websites of traffic management and operations, web-based map services (like Google map), weather forecasting websites, and local events (sport games, music concerts, etc.) websites. In this paper, online open data are discussed to provide traffic related information. Traffic conditions collected from web based map services are used to demonstrate the feasibility. The stacked long short-term memory model, a kind of deep architecture, is used to learn and predict the patterns of traffic conditions. Experimental results show that the proposed model for traffic condition prediction has superior performance over multilayer perceptron model, decision tree model and support vector machine model.
收录类别EI
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/20168
专题复杂系统管理与控制国家重点实验室_先进控制与自动化
作者单位1.State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
3.Qingdao Academy of Intelligent Industries
推荐引用方式
GB/T 7714
Yuan-yuan Chen, Y. Lv, Z. Li and F. Y. Wang, "Long short-term memory model for traffic congestion prediction with online open data," 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, 2016, pp. 132-137.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
07795543.pdf(575KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Yuanyuan]的文章
[Lv, Yisheng]的文章
[Li, Zhenjiang]的文章
百度学术
百度学术中相似的文章
[Chen, Yuanyuan]的文章
[Lv, Yisheng]的文章
[Li, Zhenjiang]的文章
必应学术
必应学术中相似的文章
[Chen, Yuanyuan]的文章
[Lv, Yisheng]的文章
[Li, Zhenjiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 07795543.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。