CASIA OpenIR  > 模式识别国家重点实验室  > 自然语言处理
Employing External Rich Knowledge for Machine Comprehension
Wang Bingning; Guo Shangmin; Liu Kang; He Shizhu; Zhao Jun
2016
会议名称Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
页码2929-2935
会议日期2016-7
会议地点美国纽约
摘要Recently proposed machine comprehension (MC) applicationisanefforttodealwithnaturallanguage understanding problem. However, the small size of machine comprehension labeled data confines the application of deep neural networks architectures that have shown advantage in semantic inference tasks. Previous methods use a lot of NLP tools to extract linguistic features but only gain little improvement over simple baseline. In this paper, we build an attention-based recurrent neural network model, train it with the help of external knowledge which is semantically relevant to machine comprehension, and achieves a new state-of-the-art result.
关键词Machine Comprehension Question Answering Deep Learning
收录类别EI
语种英语
文献类型会议论文
条目标识符http://ir.ia.ac.cn/handle/173211/20206
专题模式识别国家重点实验室_自然语言处理
通讯作者Liu Kang
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Wang Bingning,Guo Shangmin,Liu Kang,et al. Employing External Rich Knowledge for Machine Comprehension[C],2016:2929-2935.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Employing External R(754KB)会议论文 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang Bingning]的文章
[Guo Shangmin]的文章
[Liu Kang]的文章
百度学术
百度学术中相似的文章
[Wang Bingning]的文章
[Guo Shangmin]的文章
[Liu Kang]的文章
必应学术
必应学术中相似的文章
[Wang Bingning]的文章
[Guo Shangmin]的文章
[Liu Kang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Employing External Rich Knowledge for Machine Comprehension.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。