CASIA OpenIR  > 中国科学院分子影像重点实验室
Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation
Wang, Shuo1,3; Zhou, Mu2; Liu, Zaiyi4; Liu, Zhenyu1; Gu, Dongsheng1,3; Zang, Yali1,3; Dong, Di1,3; Gevaert, Olivier2; Tian, Jie1,3,5
2017-08-01
发表期刊MEDICAL IMAGE ANALYSIS
卷号40期号:40页码:172-183
文章类型Article
摘要Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of similar visual characteristics between nodules and their surroundings make it difficult for robust nodule segmentation. In this study, we propose a data-driven model, termed the Central Focused Convolutional Neural Networks (CF-CNN), to segment lung nodules from heterogeneous CT images. Our approach combines two key insights: 1) the proposed model captures a diverse set of nodule-sensitive features from both 3-D and 2-D CT images simultaneously; 2) when classifying an image voxel, the effects of its neighbor voxels can vary according to their spatial locations. We describe this phenomenon by proposing a novel central pooling layer retaining much information on voxel patch center, followed by a multi-scale patch learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where training samples are selected according to their degree of segmentation difficulty. The proposed method has been extensively evaluated on the public LIDC dataset including 893 nodules and an independent dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that CF-CNN achieved superior segmentation performance with average dice scores of 82.15% and 80.02% for the two datasets respectively. Moreover, we compared our results with the inter-radiologists consistency on LIDC dataset, showing a difference in average dice score of only 1.98%. (C) 2017 Published by Elsevier B.V.
关键词Lung Nodule Segmentation Convolutional Neural Networks Deep Learning Computer-aided Diagnosis
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
DOI10.1016/j.media.2017.06.014
关键词[WOS]THORACIC CT SCANS ; MR BRAIN IMAGES ; PULMONARY NODULES ; AUTOMATIC SEGMENTATION ; CONSORTIUM ; LESIONS
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(81227901 ; Science and Technology Service Network Initiative of the Chinese Academy of Sciences(KFJ-SW-STS-160) ; special program for science and technology development from the Ministry of science and technology, China(2017YFA0205200 ; National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health(R01EB020527) ; Instrument Developing Project of the Chinese Academy of Sciences(YZ201502) ; Beijing Municipal Science and Technology Commission([Z161100002616022) ; Youth Innovation Promotion Association CAS ; 61231004 ; 2017YFC1308701 ; 81501616 ; 2017YFC1309100 ; 81671851 ; 2016CZYD0001) ; 81527805 ; 81501549)
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000407538000011
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20306
专题中国科学院分子影像重点实验室
作者单位1.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
2.Stanford Univ, Dept Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Guangdong Gen Hosp, Guangzhou 510080, Guangdong, Peoples R China
5.Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shuo,Zhou, Mu,Liu, Zaiyi,et al. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation[J]. MEDICAL IMAGE ANALYSIS,2017,40(40):172-183.
APA Wang, Shuo.,Zhou, Mu.,Liu, Zaiyi.,Liu, Zhenyu.,Gu, Dongsheng.,...&Tian, Jie.(2017).Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation.MEDICAL IMAGE ANALYSIS,40(40),172-183.
MLA Wang, Shuo,et al."Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation".MEDICAL IMAGE ANALYSIS 40.40(2017):172-183.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2017_MIA_Wangshuo.pd(3023KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shuo]的文章
[Zhou, Mu]的文章
[Liu, Zaiyi]的文章
百度学术
百度学术中相似的文章
[Wang, Shuo]的文章
[Zhou, Mu]的文章
[Liu, Zaiyi]的文章
必应学术
必应学术中相似的文章
[Wang, Shuo]的文章
[Zhou, Mu]的文章
[Liu, Zaiyi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2017_MIA_Wangshuo.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。