CASIA OpenIR  > 中国科学院分子影像重点实验室
Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer
Zhang, Liwen1,2; Chen, Bojiang3; Liu, Xia1; Song, Jiangdian4; Fang, Mengjie2; Hu, Chaoen2; Dong, Di2,5; Li, Weimin3; Tian, Jie2,5
2018-02-01
发表期刊TRANSLATIONAL ONCOLOGY
卷号11期号:1页码:94-101
文章类型Article
摘要OBJECTIVES: To predict epidermal growth factor receptor (EGFR) mutation status using quantitative radiomic biomarkers and representative clinical variables. METHODS: The study included 180 patients diagnosed as of non-small cell lung cancer (NSCLC) with their pre-therapy computed tomography (CT) scans. Using a radiomic method, 485 features that reflect the heterogeneity and phenotype of tumors were extracted. Afterwards, these radiomic features were used for predicting epidermal growth factor receptor (EGFR) mutation status by a least absolute shrinkage and selection operator (LASSO) based on multivariable logistic regression. As a result, we found that radiomic features have prognostic ability in EGFR mutation status prediction. In addition, we used radiomic nomogram and calibration curve to test the performance of the model. RESULTS: Multivariate analysis revealed that the radiomic features had the potential to build a prediction model for EGFR mutation. The area under the receiver operating characteristic curve (AUC) for the training cohort was 0.8618, and the AUC for the validation cohort was 0.8725, which were superior to prediction model that used clinical variables alone. CONCLUSION: Radiomic features are better predictors of EGFR mutation status than conventional semantic CT image features or clinical variables to help doctors to decide who need EGFR tyrosine kinase inhibitor (TKI) treatment.
关键词Radiomics
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.1016/j.tranon.2017.10.012
关键词[WOS]PREDOMINANT HISTOLOGIC SUBTYPE ; EGFR MUTATIONS ; ADENOCARCINOMA CLASSIFICATION ; 1ST-LINE TREATMENT ; ASIAN PATIENTS ; OPEN-LABEL ; GEFITINIB ; AFATINIB ; FEATURES ; TRIAL
收录类别SCI
语种英语
项目资助者National Key R&D Program of China(2017YFC1308700 ; National Natural Science Foundation of China(81227901 ; Natural Science Foundation of Heilongjiang Province(F201311 ; special program for science and technology development from the Ministry of science and technology, China(2016CZYD0001) ; Science and Technology Service Network Initiative of the Chinese Academy of Sciences(KFJ-SW-STS-160) ; Instrument Developing Project(YZ201502) ; Beijing Municipal Science and Technology Commission(Z161100002616022) ; Key Program from the Department of Science and Technology, Sichuan Province, China(2017SZ0052) ; Youth Innovation Promotion Association CAS ; 2017YFA0205200 ; 81771924 ; 12541105) ; 2017YFC1308701 ; 81671851 ; 2017YFC1309100) ; 81527805 ; 61231004 ; 61672197 ; 81501616)
WOS研究方向Oncology
WOS类目Oncology
WOS记录号WOS:000423454900012
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20307
专题中国科学院分子影像重点实验室
作者单位1.Harbin Univ Sci & Technol, Sch Automat, Harbin 150080, Heilongjiang, Peoples R China
2.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
3.Sichuan Univ, West China Hosp, Dept Resp & Crit Care Med, Chengdu 610041, Sichuan, Peoples R China
4.China Med Univ, Sch Med Informat, Shenyang 110122, Liaoning, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Liwen,Chen, Bojiang,Liu, Xia,et al. Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer[J]. TRANSLATIONAL ONCOLOGY,2018,11(1):94-101.
APA Zhang, Liwen.,Chen, Bojiang.,Liu, Xia.,Song, Jiangdian.,Fang, Mengjie.,...&Tian, Jie.(2018).Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer.TRANSLATIONAL ONCOLOGY,11(1),94-101.
MLA Zhang, Liwen,et al."Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer".TRANSLATIONAL ONCOLOGY 11.1(2018):94-101.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2017_TO_Zhangliwen.p(1030KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Liwen]的文章
[Chen, Bojiang]的文章
[Liu, Xia]的文章
百度学术
百度学术中相似的文章
[Zhang, Liwen]的文章
[Chen, Bojiang]的文章
[Liu, Xia]的文章
必应学术
必应学术中相似的文章
[Zhang, Liwen]的文章
[Chen, Bojiang]的文章
[Liu, Xia]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2017_TO_Zhangliwen.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。