CASIA OpenIR  > 脑网络组研究中心
Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6
Ye, Chuyang; Yang, Zhen; Ying, Sarah; Prince, Jerry
2015-07
发表期刊Neuroinformatics
卷号13期号:3页码:367-381
摘要The cerebellar peduncles, comprising the superior cerebellar peduncles (SCPs), the middle cerebellar
peduncle (MCP), and the inferior cerebellar peduncles
(ICPs), are white matter tracts that connect the cerebellum
to other parts of the central nervous system. Methods for
automatic segmentation and quantification of the cerebellar
peduncles are needed for objectively and efficiently studying their structure and function. Diffusion tensor imaging
(DTI) provides key information to support this goal, but
it remains challenging because the tensors change dramatically in the decussation of the SCPs (dSCP), the region
where the SCPs cross. This paper presents an automatic
method for segmenting the cerebellar peduncles, including
the dSCP. The method uses volumetric segmentation concepts based on extracted DTI features. The dSCP and
noncrossing portions of the peduncles are modeled as separate objects, and are initially classified using a random forest
classifier together with the DTI features. To obtain geometrically correct results, a multi-object geometric deformable
model is used to refine the random forest classification.
The method was evaluated using a leave-one-out crossvalidation on five control subjects and four patients with
spinocerebellar ataxia type 6 (SCA6). It was then used to
evaluate group differences in the peduncles in a population
of 32 controls and 11 SCA6 patients. In the SCA6 group,
we have observed significant decreases in the volumes

of the dSCP and the ICPs and significant increases in the
mean diffusivity in the noncrossing SCPs, the MCP, and the
ICPs. These results are consistent with a degeneration of the
cerebellar peduncles in SCA6 patients.
关键词Cerebellar Peduncles Random Forest Classifier
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20340
专题脑网络组研究中心
作者单位Johns Hopkins University
推荐引用方式
GB/T 7714
Ye, Chuyang,Yang, Zhen,Ying, Sarah,et al. Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6[J]. Neuroinformatics,2015,13(3):367-381.
APA Ye, Chuyang,Yang, Zhen,Ying, Sarah,&Prince, Jerry.(2015).Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6.Neuroinformatics,13(3),367-381.
MLA Ye, Chuyang,et al."Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6".Neuroinformatics 13.3(2015):367-381.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
NEIN.pdf(3506KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ye, Chuyang]的文章
[Yang, Zhen]的文章
[Ying, Sarah]的文章
百度学术
百度学术中相似的文章
[Ye, Chuyang]的文章
[Yang, Zhen]的文章
[Ying, Sarah]的文章
必应学术
必应学术中相似的文章
[Ye, Chuyang]的文章
[Yang, Zhen]的文章
[Ying, Sarah]的文章
相关权益政策
暂无数据
收藏/分享
文件名: NEIN.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。