CASIA OpenIR  > 09年以前成果
Automatic region-based image annotation using an improved multiple-instance learning algorithm
Songhe Feng; De Xu; Bing Li
2008
发表期刊Chinese Journal of Electronics
卷号17期号:1页码:43-47
摘要Many existing image annotation algorithms work under probabilistic modeling mechanism. In this paper, we formulate the problem as a variation of supervised learning task and propose an Improved CitationkNN (ICKNN) Multiple-instance learning (MIL) algorithm for automatic image annotation. In contrast with the existing MIL based image annotation algorithm which intends to learn an explicit correspondence between image regions and keywords, here we annotate the keywords on the entire image instead of its regions. Concretely, we first explore the concept of Confidence weight (CW) for every training bag (image) to reflect the relevance extent between a bag and a semantic keyword. It can be treated as a stage of re-ranking on training set before annotation starts. Moreover, a modified hausdorff distance is adopted for the ICKNN algorithm to solve the automatic annotation problem. The proposed annotation approach demonstrates a promising performance over 5,000 images from COREL dataset, as compared with some current algorithms in the literature.
关键词Image Annotation
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20391
专题09年以前成果
作者单位Beijing Jiaotong University
推荐引用方式
GB/T 7714
Songhe Feng,De Xu,Bing Li. Automatic region-based image annotation using an improved multiple-instance learning algorithm[J]. Chinese Journal of Electronics,2008,17(1):43-47.
APA Songhe Feng,De Xu,&Bing Li.(2008).Automatic region-based image annotation using an improved multiple-instance learning algorithm.Chinese Journal of Electronics,17(1),43-47.
MLA Songhe Feng,et al."Automatic region-based image annotation using an improved multiple-instance learning algorithm".Chinese Journal of Electronics 17.1(2008):43-47.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Songhe Feng]的文章
[De Xu]的文章
[Bing Li]的文章
百度学术
百度学术中相似的文章
[Songhe Feng]的文章
[De Xu]的文章
[Bing Li]的文章
必应学术
必应学术中相似的文章
[Songhe Feng]的文章
[De Xu]的文章
[Bing Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。