CASIA OpenIR  > 09年以前成果
郎丛妍; 须德; 李兵
Source Publication电子学报
Abstract提出一种基于模糊信息粒化的视频时空显著单元提取方法, 为视频分析及检索等高层应用提供一个有 效的内容表示模式. 本文首先提出了一种类相关的特征粒化方法, 粒化后的模糊粒特征简化了分类关系且在一定程度 上解决了感知主观性问题, 因而通过简单的分类器可以有效地提取空域中具有高视觉感知显著度的区域( 简称为显著 区域) ; 其次, 通过对显著区域的时域一致性分析提取视频序列中时域连续的显著区域集合, 定义为时空显著单元. 提 取的时空显著单元能作为一种较为通用的语义级内容表示模式. 实验结果分别从时域和空域两个方面验证了本文方 法的有效性.
Other AbstractIn this paper, we propo se an approach to automatic extraction of spatiotemporal salient unit from video se quences. Firstly, a classrelated feature granulation algorithm is propo sed, which can map original feature space to concept space based on fuzzy information granular. To detect spatial salient regions, segmented homogenous regions are classified according their prominent importance. Then, salient regions are tracked and the results of tracking are sequences of temporal coherent regions, called spatiotemporal salient unit. Experimental results verify efficiency of proposed approach in spatial and temporal aspects. K
Document Type期刊论文
Recommended Citation
GB/T 7714
郎丛妍,须德,李兵. 一种基于模糊信息粒化的视频时空显著单元提取方法[J]. 电子学报,2008,35(10):2023-2028.
APA 郎丛妍,须德,&李兵.(2008).一种基于模糊信息粒化的视频时空显著单元提取方法.电子学报,35(10),2023-2028.
MLA 郎丛妍,et al."一种基于模糊信息粒化的视频时空显著单元提取方法".电子学报 35.10(2008):2023-2028.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[郎丛妍]'s Articles
[须德]'s Articles
[李兵]'s Articles
Baidu academic
Similar articles in Baidu academic
[郎丛妍]'s Articles
[须德]'s Articles
[李兵]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[郎丛妍]'s Articles
[须德]'s Articles
[李兵]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.