Learning Multi-task Correlation Particle Filters for Visual Tracking
Zhang, Tianzhu1,2; Xu, Changsheng1,2; Yang, Ming-Hsuan3
2018-01
发表期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
期号pp页码:1-1
摘要

We propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different object parts and features into account to learn the correlation filters jointly. The proposed MCPF is introduced to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed MCPF enjoys several merits. First, it exploits the interdependencies among different features to derive the correlation filters jointly, and makes the learned filters complement and enhance each other to obtain consistent responses. Second, it handles partial occlusion via a part-based representation, and exploits the intrinsic relationship among local parts via spatial constraints to preserve object structure and learn the correlation filters jointly. Third, it effectively handles large scale variation via a sampling scheme by drawing particles at different scales for target object state estimation. Fourth, it shepherds the sampled particles toward the modes of the target state distribution via the MCF, and effectively covers object states well using fewer particles than conventional particle filters. Extensive experimental results odemonstrate that the proposed MCPF tracking algorithm performs favorably against the state-of-the-art methods

关键词Visual Tracking Correlation Filter Structural Modeling Particle Filter
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20472
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位1.National Lab of Pattern Recognition, Institute of Automation, CAS
2.University of Chinese Academy of Sciences
3.EECS, University of California at Merced, Merced, California United States 95344
推荐引用方式
GB/T 7714
Zhang, Tianzhu,Xu, Changsheng,Yang, Ming-Hsuan. Learning Multi-task Correlation Particle Filters for Visual Tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018(pp):1-1.
APA Zhang, Tianzhu,Xu, Changsheng,&Yang, Ming-Hsuan.(2018).Learning Multi-task Correlation Particle Filters for Visual Tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence(pp),1-1.
MLA Zhang, Tianzhu,et al."Learning Multi-task Correlation Particle Filters for Visual Tracking".IEEE Transactions on Pattern Analysis and Machine Intelligence .pp(2018):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
pami17_mcpf_final.pd(21435KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
[Yang, Ming-Hsuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
[Yang, Ming-Hsuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Tianzhu]的文章
[Xu, Changsheng]的文章
[Yang, Ming-Hsuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: pami17_mcpf_final.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。