Perceptual hash-based feature description for person re-identification
Fang, Wen1; Hu, Hai-Miao1,2; Hu, Zihao1; Liao, Shengcai3; Li, Bo1,2
2018-01-10
发表期刊NEUROCOMPUTING
卷号272期号:1页码:520-531
文章类型Article
摘要Person re-identification is one of the most important and challenging problems in video surveillance systems. For person re-identification, feature description is a fundamental problem. While many approaches focus on exploiting low-level features to describe person images, most of them are not robust enough to illumination and viewpoint changes. In this paper, we propose a simple yet effective feature description method for person re-identification. Starting from low-level features, the proposed method uses perceptual hashing to binarize low-level feature maps and combines several feature channels for feature encoding. Then, an image pyramid is built, and three regional statistics are computed for hierarchical feature description. To some extent, the perceptual hash algorithm (PHA) can encode invariant macro structures of person images to make the representation robust to both illumination and viewpoint changes. On the other hand, while a rough hashing may be not discriminative enough, the combination of several different feature channels and regional statistics is able to exploit complementary information and enhance the discriminability. The proposed approach is evaluated on seven major person re-identification datasets. The results of comprehensive experiments show the effectiveness of the proposed method and notable improvements over the state-of-the-art approaches. (C) 2017 Elsevier B.V. All rights reserved.
关键词Person Re-identification Image Pyramid Regional Statistics Hierarchical Feature Description The Perceptual Hash Algorithm (Pha)
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2017.07.019
关键词[WOS]COVARIANCE ; VIEWS
收录类别SCI
语种英语
项目资助者National Key Research and Development Program of China(2016YFC0801003) ; National Natural Science Foundation of China(61370121)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000413821400054
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/20622
专题模式识别国家重点实验室_生物识别与安全技术研究
作者单位1.Beihang Univ, Beijing Key Lab Digital Media, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
2.Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Fang, Wen,Hu, Hai-Miao,Hu, Zihao,et al. Perceptual hash-based feature description for person re-identification[J]. NEUROCOMPUTING,2018,272(1):520-531.
APA Fang, Wen,Hu, Hai-Miao,Hu, Zihao,Liao, Shengcai,&Li, Bo.(2018).Perceptual hash-based feature description for person re-identification.NEUROCOMPUTING,272(1),520-531.
MLA Fang, Wen,et al."Perceptual hash-based feature description for person re-identification".NEUROCOMPUTING 272.1(2018):520-531.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fang, Wen]的文章
[Hu, Hai-Miao]的文章
[Hu, Zihao]的文章
百度学术
百度学术中相似的文章
[Fang, Wen]的文章
[Hu, Hai-Miao]的文章
[Hu, Zihao]的文章
必应学术
必应学术中相似的文章
[Fang, Wen]的文章
[Hu, Hai-Miao]的文章
[Hu, Zihao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。